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Abstract

The World Wide Web presents an interesting opportunity
for data mining and knowledge discovery, and this area is
growing rapidly as both a research topic and a business ac-
tivity. In this survey we describe some of the problems that
are addressed, and elements of the WebFountain infrastruc-
ture that we have built for addressing them. Our focus here
is on describing some of the lessons learned and some broad
research areas that are involved.

1 Introduction

The World Wide Web has had an impact on nearly ev-
ery aspect of society including commerce, science, politics
and government, personal relationships, and health. In only
one short decade it has evolved to become a global informa-
tion space for almost every kind of information. As such, it
presents an intriguing object of study. A group of us at IBM
Almaden have been working since 1999 on an infrastructure
that is designed to crawl a substantial portion of the web and
extract information from it. Our original motivation was to
build a research tool to assist us in understanding the under-
lying mathematical structure that was evolving in the web,
but it has also evolved into a platform to serve data min-
ing needs of customers. In this paper we shall describe the
goals and architecture of the WebFountain project (http:
//www.almaden.ibm.com/webfountain ), as well
as outline some problems that have arisen from our attempts
to understand the structure of information on the web.

There are several projects worldwide that have focused
on information retrieval and data mining of a substantial
fraction of the entire web, and some of them have grown
into businesses with high visibility. Some notable examples
are search engines such as Altavista and Google.1 Each of
these projects uses a distributed “crawler” program to re-
trieve documents from the web; storing them into a fed-
erated database for later processing and extracting links to
new URLs as it progresses. In the case of a search engine,
the major pre-processing consists of building an inverted

1Altavista and Google are registered trademarks.

keyword index that maps terms to document IDs, which re-
duces to a large sorting operation. Once this is done, a query
interface is built to provide a user interface. The importance
of search as an application cannot be underestimated, and in
fact it is believed that a majority of web user sessions now
begin by first consulting a search engine for an informa-
tional need.

The WebFountain system includes a search engine, but
adds other features of hypertext analysis and knowledge
discovery. The activity of knowledge discovery seeks to
uncover potentially useful and understandable patterns in
data, and in our case the underlying data is the structure
and information present on the Web. This is integrated into
business processes through a cyclic process. First we iden-
tify opportunities where data can provide value, after which
we apply data mining to gain knowledge about the oppor-
tunity, apply this knowledge, and verify our results. At this
point new insight may be gained to feed back into the cycle.
This methodology has been applied with customer data for
customer relationship management and predictive market-
ing, but when applied to web information the opportunities
are quite broad.

For example, one of our activities has been semantic tag-
ging of web data. In recent years there has been an emerging
trend to create a machine-readablesemantic webthat aug-
ments the human-readable World Wide Web [2] and creates
an infrastructure for higher-level functionality. In [7] we
describe an application of the WebFountain infrastructure
that generated semantic tagging information for over 434
million web pages, including the identification ofnamed
entitiessuch as people, place names, product names, etc.
Another example of semantic tagging applications was de-
scribed in [16], in which geographic tagging of web pages
and web sites was extracted from pages, and a navigational
interface was provided to allow the user to find pages that
were geographically similar to any given page. These rep-
resent example applications that the WebFountain project is
designed to support.

One can view the semantic tagging process as creat-
ing a semi-structured database from the raw hypertext in-
formation on the web. Once we have built this database,
there are numerous opportunities for discovery of associ-
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ation rules [1], clustering and classification of documents
and/or entities, deviation detection, and application to busi-
ness processes. In this case the semantic tags become the
primary data source for data mining, but the original web
information is still crucial for verification and inference.

The web has many substructures to it, including the high
level knowledge that it represents, the linguistic structure
of text, the character representation of the text, the visual
structure of layout, and the hierarchical structure of DNS,
file systems, and DOM [11]. Perhaps the most interesting
one is the link structure that turns it into hypertext. This
link structure contains a great deal of information about the
relationships between the information entities that reside at
URLs, and will be discussed further in section6.

2 How big is the web?

In the early days of the web, this question was of great
interest because it was clear that the web was growing so
rapidly. Over time the web has not only grown, but its very
nature has also changed. In the early days of the web it was
natural to think of URLs as representing document iden-
tifiers, or perhaps mini-documents in a web of hypertext.
One major theme that has emerged is that URLs represent
true resourcesrather than documents, and the content that
is fetched from a given URL is often expected to change
over time (sometimes very rapidly!). Another trend that has
emerged is the use of HTTP as a means to access databases
(e.g., reviews on products, inventory, discussion lists, etc.).
This is often indicated by the presence of a ’?’ character in
the URL, which arises from a standard for encoding argu-
ments into the HTTP protocol.

Given these changes, it is clear that the Web does not rep-
resent a static set of documents to count, but rather a rapidly
evolving dynamic information space. Thus the question of
“how big is the web” has several aspects to it:

• is there any practical way of counting the number of
legitimate URLs that represent content? In theory the
web has no upper bound on its size, and the only prac-
tical bound is that currently imposed by the most pop-
ular browser, which limits URLs to only 2083 charac-
ters.

• the URLhttp://www.nytimes.com/ represents
content that changes many times each day, in spite of
the fact that it does not immediately appear to be a
dynamically generated resource. How many resources
are there of this type, and how rapidly do they change?

• as time passes, major new portions of the web appear,
but others disappear. How can we characterize the
rate at which information is removed from the web?
Should it be archived, and if so - how?

• large segments of the web are protected off from re-
trieval by automated programs, either by the conven-
tion of a robots.txt file or by requirements for
user authentication. Is there any way to estimate the
amount of content that is viewable only by humans?

• the same content often can be found at multiple URLs,
and sometimes content appears at many URLs with
only subtle changes (e.g., new color scheme, new date,
or different advertisements). Is there a reasonable
methodology to characterize and estimate the duplica-
tion that appears on the web?

As a lower bound, Google now reports that they include
over 4.2 billion URLs in their web index, though it is
not clear how many of these have been crawled since it
is possible (and indeed, advantageous [10]) to index doc-
uments without crawling them. In particular, the preci-
sion of search is often improved by using the “anchor text”
that points to them, namely the highlighted text underly-
ing the hypertext link to a document. As of this writ-
ing, the crawler at IBM Almaden has discovered links to
approximately six billion URLs, and has fetched a large
fraction of these, some of them many times. The Internet
Archive (www.archive.org ) reportedly holds approxi-
mately 30 billion web pages that they have collected over
the life of the World Wide Web from various sources.

3 Crawling the Web

While it is tempting to go after as much of the web as
possible, there is a law of diminishing returns from doing
so. In particular, there is a tension between the desire to
have as much coverage as possible vs. the desire to have
only good quality content. The definition of what consti-
tutes “quality” is of course dependent on the application the
content is used for, and this greatly complicates the con-
struction of a general purpose architecture for web data min-
ing. Moreover, the widespread appeal of the web means that
it represents the full diversity of social forces in the world,
and what constitutes “quality” to one person may not be in
agreement with that of another person or culture. As an ex-
ample, there appears to be a huge amount of pornographic
material on the web, and for some applications this is prob-
lematic. Another example is provided by the direct manip-
ulation of search engine rankings through the construction
of hypertext with specific patterns.

There is another tradeoff to be made between trying to
cover as much content as possible and trying to maintain as
fresh a copy as possible of any high quality dynamic con-
tent. Thus decisions must be made as to how to use the
available processing and bandwidth in order to maintain a
collection that balances quality, freshness, and coverage.



Ignoring data types other than HTML, the average size
of a document in our crawl is approximately 12,500 bytes.
Making reasonable assumptions about how much data can
be pulled through a 100 Mbit connection to the Internet, it
is reasonable to assume that we could download approx-
imately 800 URLs per second. This is accomplished by
using a cluster of machines to manage the crawling. The
crawler application is run as a parallel application, with re-
sponsibility for crawling a host being assigned to one of the
cluster machines, and all hyperlinks to URLs on that site
being reported to that machine. The division of work by
hostname is dictated by the need to balance several require-
ments, including:

politeness when fetching documents from the web, there is
an accepted policy that automated crawlers should not
consume the resources of a particular too heavily, by
placing a delay between consecutive pages fetched.

DNS Before we can fetch a page from a site, we must re-
solve the DNS for the hostname. Since DNS is itself
an unreliable distributed protocol, the latency for re-
solving hostnames must be masked from the fetching
process. We maintain our own database for caching
DNS information, as it is a rich source of information
about the web.

robots.txt by convention, each site can declare that all
or part of a site is off limits to automated crawlers.
As URLs are discovered for a site, they must be
checked against the current version of the server’s
robots.txt file to make sure that they can be re-
trieved.

Because the crawler is our interface to the outside world,
running a crawler requires some attention to problems that
can crop up. In particular, the politeness and robots.txt re-
quirements are a constant source of confusion for the people
who maintain web servers, and it often requires explanation
or problem resolution. Our crawler is described in more
detail in in [8].

3.1 Storage Requirements

In order to store the uncompressed contents of two bil-
lion HTML URLs, it takes about 25 terabytes of raw disk
space. Estimates on the cost of disk storage vary widely,
depending on the characteristics of the technology (e.g.,
reliability, bandwidth, latency, packaging). One thing is
clear however: this cost has fallen rapidly over the last five
years, and the trend is even more pronounced than Moore’s
law. It is currently relatively straightforward to build a sys-
tem that can store a copy of the text on the web for un-
der US$100,000, and this number has not changed substan-
tially over the last five years (the web grows but storage gets
cheaper).

By supercomputing standards this does not represent a
very large data set any more, as the National Center for At-
mospheric Research reported in 2003 that they stored over
a petabyte of data for weather modeling, and NASA’s Terra
satellite reportedly generates 194 gigabytes of new raw data
each day. Moreover, the web is certainly not the only large
source of text that we could imagine storing and processing.
By contrast, the largest comparable repository of textual
material resides in the United States Library of Congress,
which holds approximately 29 million books, with perhaps
10 billion pages (a printed page almost certainly contains
more text than the average web page). The digitization of
textual information that is currently stored on paper presents
an intriguing area for the future of text analytics, and a num-
ber of projects have been undertaken in recent years to pro-
duce digital libraries with full search capabilities (e.g.,[17])
using only paper as the original data source. The typical
approach for this is to scan the printed page, producing an
image, and then process this image using optical character
recognition to produce an approximate textual representa-
tion. A rule of thumb is that a scanned page requires about
50K of data for reasonable OCR quality, so the entire Li-
brary of Congress can be stored in a system that requires
perhaps 500 terabytes, including both images and text (in
this case the images are already compressed).

In passing we note that email represents another po-
tentially large collection of text for data mining purposes
(though the privacy implications are chilling, to say the
least). It has also been estimated that the world sends ap-
proximately 20 billion email messages per day in 2003,
which translates into perhaps 200 terabytes per day of
email. Unfortunately in the case of email, a majority of
it is currently unsolicited commercial email (spam), and the
major problem faced at present is trying to classify the con-
tent. In the future we might expect some organizations to in-
crease their efforts to apply knowledge discovery on email.

4 Mining the Web

While the data set is not all that large, the Web still
presents some challenges for a storage and processing archi-
tecture. One of the crucial lessons in parallel applications is
that data locality is a primary determining factor for perfor-
mance and scalability. Most scientific applications use data
that is inherently three-dimensional, and most scientific ap-
plications and simulations lend themselves to partitioning
data so that communication from any given processor only
involves a other few processors. The inherent low dimen-
sionality of many problems is a fundamental reason why so
many scientific applications have been amenable to parallel
processing. By contrast, the web is often characterized as
a high dimensional data set, since every distinct word po-
tentially represents a dimension. If you look at all the data



elements (documents) that are related to a given document
based on textual similarity, it quickly encompasses a ma-
jor portion of the Web unless you are careful to constrain
the problem. From another perspective, the “small world”
nature of the link graph (see [18]) suggests that the infor-
mation on the web is very closely intertwined.

In designing a distributed system to support large scale
hypertext analytics, one of our first decisions is how to lay
out the data. Consider for example the problem of con-
structing an inverted keyword index on the text corpus. Ig-
noring for a moment the problems of stemming, synon-
omy and polysemy, the problem of building an index comes
down to tokenization and sorting the list of (docid,termid)
pairs by termid. These sorted lists are called “postings
lists”, and they typically make up a data set that is itself
30% the size of the original corpus, though this figure varies
according to strategy. Once an index has been built, we can
perform keyword queries on the data by retrieving the post-
ings list for the query terms, and performing boolean and
other operations on them.

The decision of how to partition the data to best sup-
port text indexing is a non-trivial one [19]. One option is
to partition the index by document, in which case the build-
ing of an index on the documents is trivially parallelizable.
Query processing then becomes a highly parallel process
however, as we have to send the query to every machine in
order to discover all documents that satisfy the query. By
contrast, we could decide to partition the postings lists by
term, in which case we need only consult the machines that
hold postings lists for terms contained in our query. In this
case there are opportunities for parallelizing the query pro-
cessing as batches of queries arrive with requests for differ-
ent terms. Each of these approaches has certain disadvan-
tages for reliability, performance, and scalability, and the
choice of an architecture depends on the characterization
of the likely queries. In the case of a public search engine
like Google, the queries tend to be extremely short, with
a heavy tail distribution for query term frequency but very
bursty traffic in response to current events. Moreover, the
customer expectation is for nearly instantaneous response.
In our business model, we expect queries to be extremely
complex, but the customer may be more patient in waiting
for their results if it is part of a methodical business cycle.
In our system we chose to partition the index by document,
which means that the query runtime system has to involve
all machines with postings lists.

4.1 Semantic Tagging

In some cases it makes relatively little difference how
we partition the documents, because processing proceeds in
a trivially parallelizable fashion, processing one document
at a time. In the WebFountain project we employ a large

number of programs called “miners” that extract metadata
about the document and store the results with the document.
Some example miners that have been built include:

encoding miner this miner uses various clues to deduce
the encoding used for the text of the page,

Language miner this takes the raw content of the page
along with the encoding from the encoding miner and
produces a guess of the dominant human language
used in the page.

UTF-8 based on the encoding used, this miner will produce
a canonicalized UTF-8 encoding of the page.

porn miner a substantial fraction of the web is porno-
graphic in nature, and this program determines with
high probability whether a page should be considered
pornographic.

detagger this miner takes the UTF-8 content of the page
and produces a detagged version in which all markup
and punctuation is removed, leaving only the text.

phone number miner this miner examines the UTF-8
content and recognizes phone numbers.

link miner this miner extracts hyperlinks and their associ-
ated metadata, including the tag type, the offset within
the page, and the anchor text associated with the link.

name miner this miner recognizes the names of people in
the content, and produces a canonicalized version of
the name (e.g., George Bush vs. G. W. Bush). The
data from this is used in [12] for experiments on social
networks.

Each of these miners reads some input from the data store
and produces some metadata that is written back to the store
along with the page. All of the data for the page is stored
in an XML-like structure [6]. In order to reduce the amount
of disk I/O, these miners are run in a sequential chain on
each page, lifting the necessary inputs for a page from disk,
running the relevant pieces through each miner, producing
tags along the way, and finally rewriting the record for the
page, but now with the newly added tags.

5 Global Analysis and aggregation

Per-page mining requires very little coordination be-
tween the machines in the cluster, but some processing re-
quires global coordination. In fact we have already seen two
examples of such global processing, namely the crawling
(which reports URLs to the relevant node that is responsi-
ble for the host of the URL) and the text indexer. At this



time it is appropriate to mention that in addition to index-
ing the terms in the document, we also index the tags that
are associated with the documents. This makes it possible
to construct queries such as “find all pages that are written
in German, have a link to a page onibm.com , mention a
politician, and contain the wordschnell.”

Another problem that requires global computations is
that of duplicate detection (or near duplicate detection). For
this purpose we employ a technique in which hashes over
moving windows of the page are computed [4], and these
“shingles” are gathered together to an off-cluster location
and processed to provide global information on exact and
approximate duplicate pages.

Another form of processing that we perform outside the
main store cluster is global ranking of documents [9]. This
calculation entails assembling all of the links from all of the
pages in order to compute the principal eigenvector of the
incidence matrix for the hyperlink graph. For this purpose
we run a parser to extract links, and we assemble them on a
single machine, where we sort them by destination. We then
prune the set of links to save only links that point the pages
we have already crawled, saving the rest of the links to the
uncrawled frontier for post-processing. This results in a di-
rected graph that contains approximately 20 billion edges.
In order to facilitate processing of this graph, we convert
the URLs to sequential integer IDs, and construct a data
representation for the graph that uses only the integer IDs.
The actual calculation of global ranking uses an iterative
linear algebra process to compute a principal eigenvector of
the incidence matrix for the graph, and for this we do not
need to hold the entire graph in memory. Instead, we scan
through the edges sequentially, performing a matrix-vector
multiplication as we go. The processing for this turns out to
be formidable but doable on a single machine [5].

There are numerous other global tasks that one might
imagine performing on the body of semantic tags and con-
tent. One example that uses the recognition of people’s
names is to find good connection paths between people, us-
ing colocation of names on a single page as an indication of
connection between them [12].

6 Modeling the Web

The many substructures of the web are what provides
us with the raw material for knowledge discovery, and part
of the research activity underlying this is the construction
of accurate data models that will explain and predict fea-
tures of these substructures. Examples of this include the
power-law distribution of inlinks [15], the bowtie structure
of the web hyperlink graph [3], and the interaction between
the hyperlink structure and the hierarchical structure of web
sites [11].

One interesting feature of the web is trying to predict

its rate of growth and the distribution of pages on different
sites. In Figure1 we show the distribution of the number of
web pages per site. The linear appearance in a log-log plot
illustrates a common theme in models of the web, namely
that the distribution appears to have a tail that is a power
law, namely

Pr(host size> k) ≈ k−alpha

for largek and some constantalpha > 1. In this particular
case, models for the size of a web site at timet have been
hypothesized [13] to follow a multiplicative growth model,
in which if S(t) represents the expected number of URLs on
a site at timet, thenS(t) = S(t− 1)g(t) for some random
variableg(t) that represents the growth rate at timet. Note
that this implies that

log(S(t)) = log(S(0)) +
t∑

i=1

log(g(i)).

If log(g(i)) are identically and independently distributed
with finite mean and variance, then the central limit theo-
rem suggests thatS(t) should have a lognormal distribution
in the limit ast → ∞, which in fact seems to agree with
data in Figure1. One feature that is non-obvious is that
Figure1 actually shows the distribution of web site size ob-
served at a single point in time, but in fact the different web
sites are in various stages of their development, and most of
the web sites are very small. Because they are in an early
stage of their development, the asymptotics of the central
limit theorem may not be valid for most sites.
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Figure 1. Distribution of the number of pages
per web site. This data was taken when our
database contained 48 million web sites.

7 Scalability

Our approach to knowledge discovery on the web has
been done on a cluster of hundreds of machines, and is very



I/O intensive. It was noted in Section3 that storage tech-
nology seems to have advanced at a rate that easily keeps
up with the rate of growth of the textual web. At present
there is a great deal that can be done by operating on a sin-
gle URL at a time, extracting semi-structured data that can
be processed globally with relatively little effort. In the fu-
ture we might start to see much more aggressive approaches
to the problem, in which large-scale supercomputers are ap-
plied to the problems and major portions of the web are op-
erated upon in RAM. For example, modern supercomputers
already exist that have fast interconnection networks and
terabytes of RAM, but to our knowledge these have never
been employed for any web knowledge discovery applica-
tions.

While we can devise growth models such as those de-
scribed in Section6, it is important to remember that the
web is only a little over a decade old, and it is difficult
to predict what the future of the web will hold. One of
the biggest unknowns lies in mining activities surrounding
the “deep web” that consists of HTTP interfaces to large
databases. Moreover, an increasing amount of informa-
tion (e.g., weblogs [14]) is being made available in semi-
structured formats that lend themselves to knowledge dis-
covery. The emergence of the Web as a global informa-
tion space means that new forms of data and information
will appear on the web, and there are likely to be significant
challenges ahead.

8 Conclusions

We have attempted to describe some of the work that
has been done by us and others on knowledge discovery
and data mining of the Web. This burgeoning field offers
many opportunities and challenges in distributed and paral-
lel computation, and the rapid growth and evolution of the
web promises to bring forth many new and interesting prob-
lems for future research.
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