The Distribution of r-Free Integers in
Arithmetic Progressions
Kevin S. McCurley

1. INTRODUCTION.

A natural number is called r-free if it is not divisible by
the rth power of a prime. Let Sr(x;q,a) denote the num-
ber of r-free numbers in the arithmetic progression a modulo

q that do not exceed x, and let

X
Rr(x)Q:a) Sr(x’qsa) - q f(asq) ’

where o r
f(a,q) = y Bd)d ,9
d=1 ar
@ ,q)|a

We shall always assume that (a,q) 1is r-free, for otherwise
Sr(x;q,a) is zero.

In this paper, we shall be concerned with the estimation
of Rr(x;q,a) » with emphasis on uniformity in a, q, and r.

We shall use cysC to denote constants, and unless other-

9o
wise indicated all constants will be independent of a, q,

and r. Our starting point is the formula

(1) 5 (x3q,a) = ) Y k()
n<sx drl
n=a(mod q) n

from which an elementary argument yields the estimate

(2) R (x;q,a) < /T

In the case (a,q) = 1 a more elaborate argument due to
‘Prachar [6] yields
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A
1/rq-1/r ql/r}

(3) Rr(x;q,a) < rw(q){x +

!

where w(q) is the number of distinct prime factors of q.
For r = 2 this has been improved by Hooley [4] to

1/2 -1/2 1/2+€
/2172, 1/

b}

(4) R, (x3q,a) <x

and the recent work of Heath-Brown [3] would seem to imply a
stronger result than (4), at least in the case x Séqz

The previous results are primarily concerned with smail
values of x relative to q, whereas in this paper we shall
be concerned with large values of x. Siebert [7] proved

€
that if € >0 is arbitrary and x 2 exp(q ), then

(5) Rr(x;q,a) < xl/r exp(—cl(é ) v1og x)

This result is analogous to the Siegel-Walfisz theorem for
primes in arithmetic pfogressions (see Davenport [2], p. 132).
The distribution of primes in arithmetic progressions modulo
q depends on the location of zeros of Dirichlet L-functions
formed with characters modulo q. We say that q 1is an ex-
ceptional modulus if there exists a real character modulo q
such that the associated L-function has a real zero exceeding
1 - czllog q. Page [5] proved that if q is not an excep-
tional modulus, then the Siegel-Walfisz theorem can be sub-
stantially improved.

bur first result is an improvement of (5) that is analogous

to Page's theorem.

THEOREM 1. There exist absolute computable constants cq and

c, such that if x >=exp(c3r logzq) and q 1is not excep-
tional, then
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R (50,0) < ()T exploc, s Ao R )

.-Note :that this is inferior to (1) unless  x 2

éxp(cwzr Eogzq)- Theorem 1 may also be regavded as a gener-

alization of a rasult of Walfisz [8,.pp‘ 192-198] , whn'pro#ed

it for g=1. = el
The proof of Theorem 1 is similar to that of Siebart [7],

and-is based on an estimate for the functiens

M(x;q,a) = . § . pla)
ngx
n=a(mod q)
This requires information concerning the zeros of all
L-functions formed with characters modulo _q'ﬁ' In our next
theorem we use a slightly different method to show that we
need nniy be concerned with characters of the form x in

camtraat with previeus methods, we riow assume that (a,q}w 1

THEOREM 2, Let q and r be such that _L(ssxr) has no real
zeros exceeding 1 - cgllsg-q., for all X module gq.  Then

there exist constants. g and c, such that

7

R (x3q,2) < x!/T exp(-_-cﬁrwwz_\/lggﬁx ) s

provided - x = exp(c7r logzq). and  {(a,q) = 1. _
From Theorem 2 it is apparent that the problem of excep-
tional moduli for r-free numﬁers is differenﬁ from that of
primes. For example, if r = ¢(q) . then X" is principal
and L(s,xr) has no positive real zercs. For a given r,
the moduli that are potentially froublesome for r-free num-
bers are those for which there exist characters X with X?
a quadratic character. In the case of squarefree numbers, -

this has the following consequence.
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Corollary. There exist constants Cq and Cq such that if
X & exp(c:8 logzq) , (a,q) =1, 16*q , and q 1is not divisi-
ble by aprime congruent to 1 modulo 4, then

Rz(x;q,a) < xll2 exp(—ch/log x) .

Otl o9 o,
In order to prove the Corollary, we write q = Py p2 Py s

and write a character X mogulo q as X = "1"2""‘k' where
xi is a character modulo pii . The order of X 1is then the
least common multiple of the order of the characters Xy, 80
i® suffices to prove that xi is not of order 4, 1If Py is
odd, then the order of Xy divides st?(pi ) = (pi_ Dp ai -1 R

and this is not divisible by 4 1if Py = 3(mod 4) . Finally
we observe that there are no quartic characters modulo 1, 2,

4, or 8.

2. PRELIMINARIES.

The following result is analogous to a result of Page

Lemma 1. There exist constants 10 and 1y such that if
L(s,X) has no real zeros exceeding 1 - czllog q, and

x 2 exp(clologzq) , then

} r@x(n) €x exp(-c;,V1og x
n<x

The proof of Lemma 1 is omitted, since it is implicit in
the work of Davenport [1}. From Lemma 1 we immediately obtain

the following lemmas.

Lemma 2. If x?exp(clologzq) and q 1is not exceptional,
then

M(x;q,2) €x exp(-cll\/log X )
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Proof. If (®,q) =1, then

M(x3q.0) = ~=J X(® | x(u@) ,

w(q)x nEx

and the result follow from Lemma 1. The case ®,9) >1 is
similarly handled in Davenport [l}.

Lemma 3. If x =2 exp(clologzq) ,r 22, and q 1is not excep-
tional, then

) p(n)n™" < xT exp(—cll\/log x )
n>x
n=% (mod q)

Lemma 3 follows from Lemma 2 by partial summation. Simi-
larly if we take X principal in Lemma 1, then we obtain the
following by partial summation.

Lemma 4, If x = exp(cmlogzq) and r 2 2, then

) ft(n)n T < x1 T exp(cll\/log X )
n>x

(n,q)=1

3. PROOF OF THEOREM 1,
The methods used by Walfisz and Siebert bear a resemblance to
the "hyperbola method" used in the Dirichlet divisor problem.
1f y<x’'T, then (1) yields
5,.(x3q,3) = ) K(d)
drm <X

drmEa(mod q)

déy+d>y
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= Zl
say. Then
% é p(d) ) 1
d<y méxd—r
d"m=a(mod q)
and clearly
0 @ ,qMa
! 1 = ¢
méxd_r xgdr,gz
r r + 0(1) ’ (dr’Q)‘a
d m=a(mod q) v qd

Hence

q
=% f(a,q)-% (A B 0(y)
):1 q 1 QZI d Ly dt

(Qr,q)|a d=% (mod q)

If vy =2 exp(clologzq) , then Lemma 3 ylelds

@y - + 0Gxy' ™" exp(-c;; VIog ¥)) + 0(y)

From Lemma 2 it follows directly that

q
= 1 QZ (/m M 5q,0) - My3a,0)})
y-r =]

2lm =a(mod q)

< xlqu exp(-cu\/log y) z m-llr
n<xy

1-
+xqy " exp(-c;; Viog ¥)
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, 71—r' e
< xqy  exp(-c,,v1og y) .

i

AL r_3/21/1og x) . Note
V2

‘We then choose y = (xq)l/r exp (-

that
-lag y 2 r—l log x - CyyF 3/2\/@
2 L log x
2r
-> 10 logzq
if x is sufficiently large and 7c3 = 2c10 . Finally,

c

—_1—1 1:-3/2\/log X
\/._

2
) —
1 1 3 -1
érlogx+rlogq—c11‘\[z_r log q

Q%;-log X

logy-‘—%logx«i-}l-logq-f

if Cy = ZCIf , S0 that y < xllr

4. PROOF OF THEOREM 2.

We use (6) again but estimate the sum 22 'in a different way.
If (a,q) =1, then

(8) I, = T 1C)
mdrgx

mdr =a(mod q)
d>y

=ﬁl72 X(a)  § p@x"(@Xm)
QD r

md <x

d>y
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By Lemma 1 the inner sum satisfies

) X (m) ) p(d)x" ) - L p(d)x" (d)
m<xy_r dg(x/m)llr dsy

< 2/ exp-c Meey) I o Ur 4 ™ exptec Ve y)
mQxfr

<zxy " exp(-¢;;V1og ¥)

1/r “11 _-3/2
This time we choose y = x"' " exp(- T_i- Y v1og x) , and

the result follows from (6), (7), and (8).
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