
An Adaptive Model for Optimizing Performance
of an Incremental Web Crawler

Jenny Edwards
�

Faculty of Information
Technology

University of Technology,
Sydney

PO Box 123
Broadway NSW 2007

Australia

jenny@it.uts.edu.au

Kevin McCurley
IBM Research Division

Almaden Research Center,
K53/802

650 Harry Road
San Jose, CA 95120-6099

USA

mccurley@almaden.ibm.com

John Tomlin
IBM Research Division

Almaden Research Center,
K53/802

650 Harry Road
San Jose, CA 95120-6099

USA

tomlin@almaden.ibm.com

ABSTRACT
This paper outlines the design of a web crawler implemented
for IBM Almaden's WebFountain project and describes an
optimization model for controlling the crawl strategy. This
crawler is scalable and incremental. The model makes no
assumptions about the statistical behaviour of web page
changes, but rather uses an adaptive approach to maintain
data on actual change rates which are in turn used as inputs
for the optimization. Computational results with simulated
but realistic data show that there is no `magic bullet' - dif-
ferent, but equally plausible, objectives lead to conicting
`optimal' strategies. However, we �nd that there are com-
promise objectives which lead to good strategies that are
robust against a number of criteria.

Categories and Subject Descriptors
H3.4 [Systems and Software]: Performance Evaluation
(eÆciency and e�ectiveness); H4.3 [Communications Ap-
plications]: Information Browsers; G1.6 [Optimization]:
Nonlinear Programming

General Terms
Algorithms, Experimentation, Performance

Keywords
Crawler, incremental crawler, scalability, optimization

�This work was completed while the author was on leave at
IBM Almaden Research Center.

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

1. INTRODUCTION
Web crawlers are an essential component of all search en-

gines, and are increasingly becoming important in data min-
ing and other indexing applications, but they must function
somewhere between the cushion of Moore's Law and the
hard place of the exponential growth of the web. While
some have questioned whether such exponential growth is
currently being maintained [1], the trend towards automated
production of web pages from databases makes it likely that
such growth will continue, or even accelerate, in the immedi-
ate future. Given that the bandwidth for conducting crawls
is neither in�nite nor free it is becoming essential to crawl
the web in a not only scalable, but eÆcient way if some rea-
sonable measure of quality or freshness is to be maintained.
The WebFountain crawler to be outlined in this paper is

designed to crawl the entire web repeatedly, keeping a local
copy of up to 1 MB of the text of each page, plus metadata,
in a repository, which is to be used for indexing, mining,
etc. Furthermore, this crawler is incremental, that is, the
repository copy of each page is updated as soon as the actual
web page is crawled. However, even using this technique,
the repository must always be out of date to some (we hope
minimal) extent.
Our crawler, to be described in greater detail below, has

as an essential feature a set of queues of URLs to be crawled,
and several parameters which determine how URLs are to
be selected from these queues. The values of these param-
eters must be determined in a way that leads to eÆcient
crawling, and we present a model which computes these pa-
rameters in such a way as to optimize some objective related
to freshness. This model assumes that the web is crawled for
some variable, but pre-speci�ed number of discretized time
periods which together constitute a cycle of the crawler.
Several de�nitions of freshness, which is non-trivial to

measure, have been proposed by various authors, but in this
paper we take the view that a page in the repository is ei-
ther up-to-date, or obsolete, that is, it no longer matches the
page on the real web. Clearly it is desirable to minimize the
number of such pages, but we shall see that such an objec-
tive can be formulated in a number of ways. Pages become
obsolete when they change on the real web between crawls,
but for simplicity we shall also consider the special case of
new pages, of which we have no copy in the repository, but

106



of which we become aware, either through new links, or ex-
ogenous information, and de�ne them as also being obsolete.
A particular feature of the model we describe is that it

makes no a priori assumptions about the way in which
pages change, simply that we can measure when changes oc-
cur, and record the frequency with the pages' metadata. In
this sense the model is adaptive in that the more cycles the
crawler is in operation, the more reliable and re�ned is the
data which we have available to drive it. For our purposes
a page change is required to be non-trivial, as determined
by a shingle (see [4]). Furthermore, while growth in the web
changes the data in our model, it has no e�ect on the size
of the model nor the solution time.
No previous work that we know of makes use of precisely

this set of assumptions, but much of it has some bearing on
our model. After a review of this work, we present a more
detailed description of the crawler, followed by a mathe-
matical description of the optimization model for the model
parameters. We then describe a series of computational ex-
periments designed to test use of the model and some of its
variants on simulated but realistic data.

2. PREVIOUS WORK
There have been several studies of web crawling in its rel-

atively short history, but most of them have had a focus
rather di�erent from ours. Some have concentrated on as-
pects relating to caching, e.g., [13] and [9]. Others have been
principally interested in the most eÆcient and e�ective way
to update a �xed size database extracted from the web, often
for some speci�c function, such as data mining, see eg the
work of Cho et al. [5, 6, 7]. These studies were performed
over time periods ranging from a few days to seven months.
However, for di�ering practical reasons, these crawlers were
restricted to subsets of web pages.
Several authors, e.g., Co�man et al. [8], approach crawl-

ing from a theoretical point of view, comparing it to the
polling systems of queueing theory, i.e., multiple queue-single
server systems. However, the problem equivalent to the ob-
solescence time of a page is unexplored in the queueing lit-
erature.
A common assumption has been that page changes are a

Poisson or memoryless process, with parameter � as the rate
of change for the pages. Brewington and Cybenko [1] and
Cho and Garcia-Molina [6] con�rm this within the limits
of their data gathering. This is somewhat undermined by
another study, based on an extensive subset of the web by
Brewington and Cybenko [2] showing that most web pages
are modi�ed during US working hours, ie 5am to 5pm (Sil-
icon Valley Standard Time), Monday to Friday. Neverthe-
less, the widely accepted Poisson model forms the basis for
a series of studies on crawler strategies. These lead to a va-
riety of analytical models designed to minimize the age or
maximize the freshness of a collection by investigating:

� how often a page should be crawled

� in what order pages should be crawled

� should a crawling strategy be based on the importance
of pages or their rates of change?

The de�nitions or metrics for freshness, age and impor-
tance are not completely consistent, but in general the fresh-

ness of a page refers to the di�erence between the time of
crawling a page and the current time, while the age of a
page is the di�erence between the time when the page last
changed and the current time. Widely di�ering metrics have
been o�ered for the importance of a page, but as the total
number of possible metrics is large and the crawler in this
study does not currently use any of them, no formal de�ni-
tions will be given here.
While di�ering in detail, the experimental results in the

referenced papers agree on general trends, and in particular
that:

� the average size of individual pages is growing

� the proportion of visual and other nontextual material
is growing in comparison to text

� the number of pages has been growing exponentially
([1] gives two di�erent estimates of 318 and 390 days
for the web to double in size but also says that the
growth rate is slowing. However, see our comments at
the beginning of Section 1.)

� di�erent domains have very di�erent page change rates

� the average age and lifetimes of pages are still quite
low (cf Tables 1 and 2).

While all these trends are important for caching, the last
three are more relevant to the study of whole web crawling
to be discussed here.

2.1 Crawling Models
In a series of papers, Cho et al. [5, 6, 7] address a number

of issues relating to the design of e�ective crawlers. In [7]
they examine di�erent crawling strategies using the Stanford
University web pages as a particular subset of the web and
examine several scenarios with di�erent physical limitations
on the crawling. Their approach is to visit more important
pages �rst and they describe a number of possible metrics
for determining this as well as the order in which the chosen
pages will be visited. They show that it is possible to build
crawlers which can obtain a signi�cant portion of important
pages quickly using a range of metrics. Their model appears
to be most useful when trying to crawl large portions of the
web with limited resources or if pages need to be revisited
often to detect changes.
Cho and Garcia-Molina [6] derive a series of mathemati-

cal models to determine the optimum strategy in a number
of crawling scenarios, where the repository's extracted copy
of the web is of �xed size. They examine models where
all pages are deemed to change at the same average or uni-
form rate and where they change at di�erent or non-uniform
rates. For a real life crawler, the latter is more likely to be
relevant. For each of these two cases, they examine a vari-
ety of synchronization or crawling policies. How often the
repository web copy is updated depends on the crawling ca-
pacity or bandwidth available for the required number of
pages. Within that limitation is the question of how often
each individual page should be crawled to meet a particular
objective such as maximizing freshness. Cho and Garcia-
Molina examine a uniform allocation policy, in which each

107



page is crawled at the same rate, and a non-uniform or
proportional policy where each page is crawled with a fre-
quency that is proportional to the frequency with which it is
changed on the web, ie pages which are updated frequently
are crawled more often than those which change only occa-
sionally. Finally, they examine the order in which the pages
should be crawled. They develop models of:

� �xed order where all pages are crawled repeatedly in
the same order each cycle

� random order where all pages are crawled in each cycle
but in a random order, eg by always starting with the
root URL for a site and crawling all pages linked to it

� purely random where pages are crawled on demand,
which may mean some pages are crawled frequently
and others never.

Their models show that when pages change at a uniform
rate, maximum freshness or minimum age is obtained by
crawling pages at a uniform rate and in �xed order. As we
have noted, most studies make the assumption that pages
change at a variable rate which may be approximated by a
Poisson distribution, but in the second stage of their study,
Cho and Garcia-Molina assume the broader gamma distri-
bution for this change rate. Moreover, they prove that their
particular model is valid for any distribution, and conclude
that when pages change at varying rates, it is always bet-
ter to crawl these pages at a uniform rate, ie ignoring the
rate of change, than at a rate which is proportional to the
rate of change. However, to maximize freshness they �nd a
closed form solution to their model which provides an op-
timal crawling rate which is better than the uniform rate.
These results were all derived for a batch or periodic crawler,
ie where a �xed number of pages is crawled in a given time
period. These pages are used to update a �xed size reposi-
tory either by replacing existing repository pages with newer
versions or by replacing less important pages with those
deemed to be of greater importance.
Co�man et al. [8] built a theoretical model to minimize

the fraction of time pages spend out of date. Also assuming
Poisson page change processes and a general distribution for
page access time, they similarly show that optimal results
can be obtained by crawling pages as uniformly as possible.
In [5], Cho and Garcia-Molina devise an architecture for

an incremental crawler, and examine the use of an incremen-
tal versus a batch crawler under various conditions, particu-
larly those where the entire web is not crawled. Crawling a
subset (720,000 pages from 270 sites) of the web daily, they
determined statistics on the rate of change of pages from dif-
ferent domains. They found, for example, that for the sites
in their survey, 40% of pages in the .com domain change
daily in contrast to .edu and .gov domains where more than
50% of pages did not change in the four months of the study.
They show that the rates of change of pages they crawled
can be approximated by a Poisson distribution, with the
proviso that the �gures for pages which change more often
than daily or less often than four monthly are inaccurate.
Using di�erent collection procedures, Wills and Mikhailov
[13] derive similar conclusions.
A disadvantage of all these models is that they deal only

with a �xed size repository of a limited subset of the web.
In contrast, our model is exible, adaptive, based upon the
whole web and caters gracefully for its growth.

Table 1: Cumulative Probability Distribution of
Page Age in Days

cumulative probability page age (days)

0.03 100

0.14 101

0.48 102

0.98 103

Table 2: Cumulative Probability Distribution of
Mean Lifetime in Days

cumulative probability mean lifetime (days)

0.0 100

0.12 101

0.40 102

1.00 :6 � 103

2.2 Page Statistics Derived from Crawling
Statistics on page ages, lifetimes, rates of change, etc are

important for our model. Subject to the assumptions of a
constant size repository copy of the web, which is updated
with periodic uniform reindexing, Brewington and Cybenko
[1] showed that in order to be sure that a randomly chosen
page is at least 95% fresh or current up to a day ago, the
web (of 800M) pages needs a reindexing period of 8.5 days,
and a reindexing period of 18 days is needed to be 95% sure
that the repository copy of a random page was current up to
1 week ago. In another study [2], the same authors estimate
the cumulative probability function for the page age in days
on a log scale as shown in Table 1.
As with similar studies, this does not accurately account

for pages which change very frequently or those which change
very slowly. Allowing for these biases, the authors also es-
timate the cumulative probability of mean lifetime in days
shown in Table 2.
Brewington and Cybenko then use their data to examine

various reindexing strategies based on a single revisit period
for all pages, and refer to the need for mathematical opti-
mization to determine the optimal reindexing strategy when
the reindexing period varies per page. Such a model is the
main focus of this paper.

3. THE WEBFOUNTAIN CRAWLER
The model in this paper is designed to address the ef-

�ciency of a crawler recently built at IBM as part of the
WebFountain data mining architecture. The features of this
crawler that distinguish it from most previous crawlers are
that it is fully distributed and incremental. By distributed,
we mean that the responsibility for scheduling, fetching,
parsing and storing is distributed among a homogeneous
cluster of machines. URLs are grouped by site, and a site
is assigned to a machine in the cluster (a few very large
sites such as geocities may actually be split among several
machines). There is no global scheduler, nor are there any

108



global queues to be maintained. Moreover, there is no ma-
chine with access to a global list of URLs.
An incremental crawler (as opposed to a batch crawler)

is one that runs as an ongoing process, and the crawl is
never regarded as complete. The underlying philosophy is
that the local collection of documents will always grow, al-
ways be dynamic, and should be constructed with the goal
of keeping the repository as fresh and complete as possible.
Instead of devoting all of its e�ort to crawling newly discov-
ered pages, a percentage of its time is devoted to recrawling
pages that were crawled in the past, in order to minimize
the number of obsolete pages. Note that our use of the term
`incremental' di�ers from that of Cho et al. [5, 6, 7]. Their
de�nition assumes that the document collection is of static
size, and a ranking function is used to replace documents in
the collection with more important documents. We regard
the issue of incrementality to be independent of the size of
the collection, and we allow for growth of the crawler, in
order to meet the demands of an ever-expanding web.
The WebFountain crawler is written in C++, is fully dis-

tributed, and uses MPI (Message Passing Interface) for com-
munication between the di�erent components. The three
major components are the Ants, which are the machines as-
signed to crawl sites, duplicate detectors, which are responsi-
ble for detecting duplicates or near-duplicates, and a single
machine called a Controller. The Controller is the control
point for the machine cluster, and keeps a dynamic list of
site assignments on the Ants. It is also responsible for rout-
ing messages for discovered URLs, and manages the overall
crawl rate, monitoring of disk space, load balancing, etc.
Other crawlers have been written that distribute the load

of crawling across a cluster, but they generally distribute
the work in di�erent ways. Due to the competitive nature
of the Internet indexing and searching business, few details
are available about the latest generation of crawlers. The
�rst generation Google crawler [3] is apparently designed
as a batch crawler, and is only partially distributed. It
uses a single point of control for scheduling of URLs to
be crawled. While this might appear convenient, it also
provides a bottleneck for intelligent scheduling algorithms,
since the scheduling of URLs to be crawled may potentially
need to touch a large amount of data (eg, robots.txt, polite-
ness values, change rate data, DNS records, etc). Mercator
[10] supports incremental crawling using priority values on
URLs and interleaving crawling new and old URLs.
The scheduling mechanism of theWebFountain crawler re-

sembles Mercator in that it is fully distributed, very exible,
and can even be changed on the y. This enables eÆcient use
of all crawling processors and their underlying network. The
base software component for determining the ordering on
URLs to be crawled consists of a composition of sequencers.
Sequencers are software objects that implement a few sim-
ple methods to determine the current backlog, whether there
are any URLs available to be crawled, and control of load-
ing and ushing data structures to disk. Sequencers are then
implemented according to di�erent policies, including a sim-
ple FIFO queue or a priority queue. Other Sequencers are
combiners, and implement a policy for joining sequencers.
Examples include a round robin aggregator, or a priority
aggregator that probabilistically selects from among several
sequencers according to some weights. In addition, we use
the Sequencer mechanism to implement the crawling polite-
ness policy for a site. The ability to combine sequencers and

Figure 1: The Structure of Queues that Feed the
URL Stream in the WebFountain Crawler

cascade them provides a very convenient means to build a
exible recrawl strategy.
The strategy that we decided on for implementing the

crawl strategy is illustrated in Figure 1. At the top level,
there are two queues, one for immediate crawling that is in-
tended to be used from a GUI, and one that aggregates all
other URLs. Under that, each Ant is assigned a list of sites
to be crawled, and maintains an active list of approximately
1000 sites that are currently being crawled. The selection of
URLs to be crawled is taken from this active list in a round
robin fashion. This avoids crawling any particular site too
frequently - the so-called politeness criterion. In addition,
each Ant is multithreaded to minimize latency e�ects. When
a site is added to the active list, a sequencer is constructed
that loads all data structures from disk, merges the list of
newly discovered URLs with the list of previously crawled
URLs for that site, and prepares two queues. One of these
queues contains URLs that have never been crawled, and
one contains URLs that are scheduled for a recrawl. It is
the way we manage our never-crawled and recrawl lists that
it is to be determined by our optimisation model.

4. MODEL DESCRIPTION
We constructed this model for robustness under growth of

the web and changes to its underlying nature. Hence we do
not make any a priori assumptions about the distribution
of page change rates. However, we do make an assumption
that particular historical information on each page is main-
tained in the metadata for that page. Speci�cally, each time
a page is crawled, we record whether that page has changed
since it was last crawled, and use this information to put
the page into one of (at most 256) change-frequency `buck-
ets', recorded as one byte of the page's metadata. Clearly,
such data becomes more reliable as the page ages. In prac-
tice, page change rates may range from as often as every
15 minutes to as infrequently as once a year or less (eg a
government department contact page). The very rapidly
changing pages (several times a day) are almost all media
sites (CNN, for example) and we feel that this relatively
small and specialized set of sites should be handled sepa-
rately. The remaining pages in the repository are grouped
into B buckets each containing bi pages which have similar
rates of change.

109



Figure 2: Identi�cation of Obsolete Pages in each
Bucket per Time Period

A (theoretically) complete crawl of the web is modeled as
taking place in a crawler cycle. Both the number of time
periods in such a cycle, T , and the (equal) length of each
period may be varied as needed. Our fundamental require-
ment is to estimate the number of obsolete pages in each
frequency bucket at the end of each time period. The way
in which this is calculated is best illustrated by following the
tree of alternatives in Figure 2.
We consider a generic time period and a generic bucket

(dropping the subscript) of pages in the repository, contain-
ing b pages at the beginning of the time period. Let the
number of such pages for which our repository copy is al-
ready obsolete at the beginning of the time period be y, leav-
ing (b� y) up-to-date. Now let x be the number of pages in
this bucket crawled during the time period, and assume that
obsolete and up-to-date pages are crawled with equal prob-
ability. This gives the partition of pages in the bucket seen
at the second level of branches in the tree. Finally, let a be
the (given) proportion of pages which change in the bucket
during the time period, and assume that such a change is
detected if the page is crawled in the same time period.
The b pages in the bucket are now partitioned among the
leaves of the tree, and we easily see that the leaves marked

* correspond to obsolete pages. Note that by adding the
expressions attached to these two leaves we obtain an ex-
pression for the number of obsolete pages at the end of this
time period, as a function of the data at the beginning of
the period and of the decision variable x, which speci�es
how many pages in this bucket to crawl. This relationship
is fundamental to our model, and to the way in which the
queue of `old' URLs is managed.
In addition to the `old' pages we must deal with the `new'

pages either discovered or exogenously supplied during the
crawl. Let the number of these new pages crawled during a
time period be z (these are then added to the appropriate
buckets in the repository). The remaining new uncrawled
pages are represented by n. These pages are also regarded
as obsolete and will remain in that state until crawled.
We are now ready to give the de�nitions of the variables

and the formal model.

T = number of time periods in model

B = number of buckets

where bucket refers to pages which change

at approximately the same rate

cconstit = average time in seconds to crawl an old page

in bucket i in time period t

dconstt = average time in seconds to crawl a new page

in time period t

Cconstt = total number of seconds available for crawling

in time period t

oldwtit = experimental proportional weight on crawling

obsolete pages in bucket i in time period t

newwtt = experimental proportional weight on crawling

new pages in time period t

oldnwtit = probability that when an old page in bucket i

is crawled in time period t, it �nds a new page

newnwtt = probability that when a new uncrawled page

is crawled in time period t, it �nds a new page

nconst = minimum number of new pages brought to the

attention of the crawler per time period

bit = number of pages in bucket i

at the end of time period t

pi = distribution of new pages to buckets

where pi is proportional to bi and
PB

i=1
pi = 1

ait = fraction of pages in bucket i which change

in time period t

yit = number of obsolete pages in bucket i

at end of time period t

xit = number of crawled pages in bucket i

in time period t

nt = number of new uncrawled pages

at end of time period t

zt = number of new pages crawled in time period t.

The objective of the time period model is to minimize the
weighted sum of obsolete pages, ie:

minimize

TX

t=1

(

BX

i=1

oldwtityit + newwttnt)

subject to the following constraints:

The bandwidth available for crawling during each time pe-
riod may not be exceeded.

Cconstt �
BX

i=1

cconstitxit + dconsttzt (1)

The number of obsolete existing or old pages, yit is updated

110



as discussed above at every time period.

yit = (1 � (xit=bi;t�1))((1� ait)yi;t�1 + aitbi;t�1) (2)

The number of new pages, nt is updated every time period.

nt = nt�1 +
BX

i=1

oldnwtitxit +(newnwtt�1)zt+ nconst (3)

The total number of pages in each bucket, bit is updated
every time period.

bit = bi;t�1 + pizt (4)

The number of existing pages, xit crawled in any bucket in
any time period must be fewer than the total number of
pages to be crawled in the bucket, bi;t�1.

xit � bi;t�1 (5)

Similarly, in any time period, the number of new pages
crawled, zt must be less than the number of new uncrawled
pages, nt�1.

zt � nt�1 (6)

0 � bit; xit; yit; nt; zt

Each equation holds 8t = 1; : : : ; T and, where relevant,
8i = 1; : : : ; B

The critical solution outputs are the ratios xit=bit and
the zt values, which tell us how many URLs in the `old' and
`new' queues we should crawl in each time period, and hence
the probabilities p in Figure 1.

5. SOLUTION
Since the balance equation 2 for updating yit is highly

nonlinear, the model must be solved by a nonlinear program-
ming (NLP) method capable of solving large scale problems.
For our model runs, it was assumed that there are 500M
unique pages on the web, with a growth rate which allows
the web to double in size in approximately 400 days. With a
value of 14 for the number of time periods T , and 255 for B,
the number of buckets, the basic model has approximately
11200 variables of which 10000 are nonlinear and 11200 con-
straints of which about 3300 are nonlinear. Even after the
use of various presolve techniques to reduce the size of the
problem, the solution proved to be non-trivial.
We used the NEOS [12] public server system to run exper-

iments with several di�erent NLP solvers on the models and
found that the standard NLP package, MINOS [11] gave the
best and most reliable results. Solution times for all varia-
tions of the model were around ten minutes on MINOS on
a timeshared machine.
Since the WebFountain crawler for which this model was

designed is in its early stages of development, we have very
little actual historical data for such parameters as the rate of
change of various pages. We have, therefore, used simulated,
but realistic data, based on the previous studies we have
cited from the literature.

5.1 Results
Since our model runs use estimated data, many experi-

ments were run for a range of values of the critical parame-
ters. Reassuringly, the model is quite robust under most of

Table 3: Model Statistics
objective Total Pages Total Obsolete

at end Pages at end

Strat1 32:592 � 107 5:224 � 108 3:086 � 107

Strat2 1:722 � 107 5:184 � 108 1:609 � 107

Strat3 2:138 � 107 5:224 � 109 1:702 � 108

these changes. However, it turns out to be quite sensitive
to changes in the weights in the objective function, oldwtit
and newwtt. Given the overall aim of minimizing the total
number of obsolete pages, we describe the implementation of
three of the many possible variations of the objective func-
tion weights:

� Strategy 1 gives equal weights (summing to 1) to each
time period in a cycle of the crawler

� Strategy 2 gives the last time period the total weight
of 1 and the other time periods, zero weight, ie the
model is minimizing the number of obsolete pages just
on the last time period of a crawler cycle

� Strategy 3 gives the last time period a high weighting
and the remaining time periods very low weightings,
ie it is still trying to minimize the number of obsolete
pages in the last time period but it is also taking into
account the obsolete pages in all time periods.

5.2 Experiment 1
As shown in Table 3, Strategy 2 gives the minimum value

of the objective function, ie the weighted total of obsolete
pages, followed by Strategy 3. The objective value for Strat-
egy 1 is considerably higher. Figure 3 illustrates the e�ects
of implementing these strategies.
Strategy 2 recommends crawling each page just once dur-

ing a cycle of the crawler. This uniform crawling is in line
with the theoretical results of Cho and Garcia-Molina [6]
and Co�man et al. [8]. Strategy 1 recommends crawling fast
changing pages in many time periods of a cycle. For these
pages, the crawl rate is usually higher even than the page
change rate. However, it does not crawl at all, those pages
which fall into the lowest 40% of page change rates. Strat-
egy 3 is a compromise. It recommends crawling all pages at
least once in a crawler cycle with the fastest changing 18%
being crawled more than once per cycle.
Table 3 also shows that while the total number of web

pages at the end of a crawler cycle is similar under each
strategy, the total number of obsolete pages is not. Figure 4
examines the total number of obsolete pages in each time
period of a cycle under each strategy.
If we disregard the actual objective function and look at

the number of obsolete pages we see that in any given time
period (except the last), Strategy 1 always has fewer obsolete
pages than Strategy 3 and considerably fewer than Strategy
2. Because of the weights in the objective functions for the
di�erent strategies, the lower number of obsolete pages for
Strategies 2 and 3 in the last time period is expected.
Mathematically, Strategy 2 is optimal. However, depend-

ing on the purpose(s) for which a crawler is designed, it
may not be acceptable to have an incremental crawler ig-
nore the page change rate and crawl all pages at a uniform

111



Figure 3: Recommended Number of Crawls per
Crawler Cycle for Pages with Di�erent Change
Rates under Di�erent Crawl Strategies

Figure 4: Total Number of Obsolete Pages each
Time Period under Di�erent Strategies

Table 4: Model Statistics for Versions 1 and 2 of
Strategies 1 and 3

objective Total Pages Total Obsolete
at end Pages at end

S1v1 32:592 � 107 5:224 � 108 3:086 � 107

S1v2 37:744 � 107 5:214 � 108 3:534 � 107

S3v1 2:138 � 107 5:224 � 109 1:702 � 108

S3v2 2:500 � 107 5:193 � 109 1:972 � 108

Figure 5: E�ects on the Number of Obsolete Pages
per Time Period of Varying the Page Change Rates
Distribution

rate, ie just once each crawler cycle. In terms of minimizing
the number of obsolete pages each time period, Strategy 1
is clearly superior. However, it does not crawl 40% of the
pages during a cycle. This may also be unacceptable for
many of the possible uses of the crawler.
Strategy 3 again provides a reasonable compromise. It

crawls all pages within a cycle and still has a somewhat lower
mathematical minimum objective value than Strategy 1.

5.3 Experiment 2
Many versions of the model were run changing the val-

ues of di�erent parameters. In all cases the results were as
expected. Experiment 2 is a typical example. In the ini-
tial or Version 1 of the model, the 500M repository pages
were assumed to be distributed equally to each bucket, ie it
was assumed that there are the same number of pages corre-
sponding to each of the di�erent page change rates. Each of
the 255 buckets received 2M pages. In Version 2, the buck-
ets representing the 25% of the fastest changing page rates
and the 25% of the slowest changing pages all received 3M
pages initially. The buckets representing the middle 50% of
page change rates, each received 1M pages initially. Table 4
shows the e�ect on the total number of obsolete pages of
this change.
Figure 5 shows that this change made little di�erence to

the distribution of obsolete pages for each time period. For
both Strategy 1 and Strategy 3, there are a larger number of
obsolete pages in Version 2. This is expected as the models
in Version 2 started with a higher number of obsolete pages
and given the �nite capacity of the crawler, this number
will grow during a 14 time period cycle of the crawler unless
forced to reduce as in the last few time periods of Strategy 3.

112



Figure 6: Trend towards Stabilisation in the Num-
ber of Obsolete Pages over Time

Experiment 2 does show the robustness of the model to
changes in the initial parameters.

5.4 Experiment 3
The object of Experiment 3 was to determine if the num-

ber of obsolete pages continued to grow with time or if this
number reached stabilisation. There were four runs, all of
the model with an objective corresponding to Strategy 1.
Figure 6 illustrates the results. Strategy 1 (Version 1) was
run for 14 time periods and for 28 time periods as was Ver-
sion 3. In Version 3, it was assumed that the page change
rates were half as frequent as in Version 1. The distribu-
tion of obsolete pages over time periods between and within
each version shows the expected similarities. As can be seen
in any given time period, the number of obsolete pages for
Version 3 is approximately half that of Version 1. More im-
portantly, it can be seen that for both versions, the number
of obsolete pages is tending to stabilise. It was not possible
to run the crawler model for a longer period and obtain a
useful mathematical solution, nor would the crawler be run
for this long in practice without an update of the parameters
and reoptimization.
The objectives we used, based on the di�erent weighted

sums of obsolete pages, correspond to maximising the fresh-
ness of the collection under di�erent crawler aims, eg all the
web must be crawled each cycle or a certain percentage of
pages in the repository should be guaranteed to be no more
than say, a week old.
Taking all the experiments into consideration, the results

are consistent with an implementation philosophy of using
Strategy 2 in early cycles of the crawler, to drive down the
number of obsolete pages in the repository quickly. It would
then be bene�cial to switch to Strategy 1 or 3 to maintain
a stable number.

6. CONCLUSIONS
The computational results we have obtained (albeit with

simulated data) suggest that an eÆcient crawling strategy
can be implemented for the WebFountain (or any) incre-
mental crawler without making any theoretical assumptions
about the rate of change of pages, but by using information
gleaned from actual cycles of the crawler which adaptively
build up more extensive and reliable data. Thus the model
we have described is adaptive at two levels: within a crawler

cycle it coordinates the management of the URL queues over
the cycle's component time periods, and between cycles the
data necessary for the optimization is updated for the next
cycle - particularly the change rates, and new page creation
rates. We look forward to full scale implementation of the
model when the WebFountain crawler begins regular oper-
ation.

7. ACKNOWLEDGEMENTS
The authors would like to thank members of IBM's Web-

Fountain team, in particular, Sridhar Rajagopalan and An-
drew Tomkins. They would also like to thank Michael Saun-
ders of Stanford University and the NEOS team for help
with the solution of the nonlinear programming problems
and Paula Wirth for technical assistance.

8. REFERENCES
[1] B. Brewington and G. Cybenko. How dynamic is the

web? In Proceedings of the 9th World Wide Web
Conference (WWW9), 2000.

[2] B. Brewington and G. Cybenko. Keeping up with the
changing web. Computer, pages 52{58, May 2000.

[3] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
7th World Wide Web Conference (WWW7), 1998.

[4] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic clustering of the web. In Proceedings of 6th
International World Wide Web Conference (WWW6),
1997.

[5] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
Proceedings of 26th International Conference on Very
Large Databases (VLDB), 2000.

[6] J. Cho and H. Garcia-Molina. Synchronizing a
database to improve freshness. In Proceedings of 2000
ACM International Conference on Management of
Data (SIGMOD), 2000.

[7] J. Cho, H. Garcia-Molina, and L. Page. EÆcient
crawling through URL ordering. In Proceedings of the
7th World Wide Web Conference (WWW7), 1998.

[8] E. Co�man, Z. Liu, and R. Weber. Optimal robot
scheduling for web search engines, Rapport de
recherche no 3317. Technical report, INRIA Sophia
Antipolis, 1997.

[9] F. Douglis, A. Feldmann, and B. Krishnamurthy. Rate
of change and other metrics: a live study of the world
wide web. In Proceedings of USENIX Symposium on
Internetworking Technologies and Systems, 1997.

[10] A. Heydon and M. Najork. Mercator: A scalable,
extensible web crawler. World Wide Web,
2(4):219{229, 1999.

[11] MINOS.
(http://www.sbsi-sol-optimize.com/minos.htm).

[12] NEOS Server for Optimization.
(http://www-neos.mcs.anl.gov).

[13] C. Wills and M. Mikhailov. Towards a better
understanding of web resources and server responses
for improved caching. In Proceedings of the 8th World
Wide Web Conference (WWW8), 1999.

113


