
Fast Discovery of Connection Subgraphs

Christos Faloutsos∗, Kevin S. McCurley, and Andrew Tomkins
IBM Almaden Research Center

ABSTRACT
We define a connection subgraph as a small subgraph of a
large graph that best captures the relationship between two
nodes. The primary motivation for this work is to provide a
paradigm for exploration and knowledge discovery in large
social networks graphs. We present a formal definition of
this problem, and an ideal solution based on electricity ana-
logues. We then show how to accelerate the computations,
to produce approximate, but high-quality connection sub-
graphs in real time on very large (disk resident) graphs.

We describe our operational prototype, and we demon-
strate results on a social network graph derived from the
World Wide Web. Our graph contains 15 million nodes and
96 million edges, and our system still produces quality re-
sponses within seconds.

1. INTRODUCTION
Suppose we are given a large graph and we are asked to

find the relationship between two nodes ’A’ and ’B’. For il-
lustration, we shall use a social network as an example of
a graph. In the simplest case, the relationship is manifest
as an edge in the graph. However, social network graphs
are typically sparse, meaning that a vanishing fraction of
node pairs actually have an edge between them. Nonethe-
less, they may be related due to a composition of simple
edges: ’A’ is related to ’X’, and ’X’ is related to ’B’. In this
case, the relationship might be encapsulated as a path in
the graph. In real life, however, the relationship between
two people is often multi-faceted; for example, ’A’ and ’B’
might have the same manager and the same dentist. More-
over, the paths connecting two people may not be vertex-
disjoint; for instance, the dentist may also be the sister of
’A’, or may be dating the sister of ’A’. Representing the
real-life relationship between two nodes in a graph using
a single path is inherently limiting for two reasons: first,
any automated mechanism to pick the most important path
will make mistakes, and showing a subgraph will increase

∗On sabbatical from Carnegie-Mellon University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

the probability that the critical path is present; and second,
there may not be a critical path, as in the example of two
people who have written papers together with a multitude
of co-authors, rather than a single co-author. In this paper,
we address the problem of extracting from very large graphs,
a small (amenable to visual inspection) subgraph that best
captures the connections between two nodes of the graph.

Connection subgraphs are useful in many domains. In
a social network setting, connection subgraphs will help us
identify the few people most likely to have been infected
with a disease (or heard a rumor, or information-leak, or
joke). They can also help us spot whether an individual has
unexpected ties to any members of a list of individuals. In
other domains, connection subgraphs will help us summarize
the connection between two web sites using the hyper-link
graph; or the connection between two proteins in a metabolic
network; or between two genes in a regulatory network.

More formally, the problem of interest is as follows:

Connection Subgraph Problem

Given: an edge-weighted undirected graph G, vertices s and
t from G, and an integer budget b

Find: a connected subgraph H containing s and t and at
most b other vertices1 that maximizes a “goodness”
function g(H).

The constraint on b is motivated by limitations on visual-
ization of graphs (e.g., b ≤ 100). The function g represents
the “goodness” of the solution H. If g is the negative sum of
edge weights in H, for instance, then the resulting connec-
tion subgraph will be the shortest path from s to t; this is
a valid answer, but probably not the most illuminating one.
Likewise, on the other extreme, if g is the number of edges
of H then the connection subgraph will be the densest set
of s-t paths; this is again probably not the best answer.

The Connection Subgraph Problem thus has two sub-
problems:

• Sub-problem 1: What function g is an appropriate
“goodness”?

• Sub-problem 2: How can the subgraph H maximizing
g be found quickly?

In this paper we propose a particular function g, tailored to
produce connection subgraphs that capture salient aspects

1In the following, the budget on vertices can be replaced
with a budget on edges as required by the problem domain.

of relationships in social network graphs (though it also ap-
plies to graphs arising from other applications). We also
propose algorithms to compute the solution on very large
graphs.

Our formulation and upcoming solutions are domain in-
dependent, but we illustrate our techniques on a specific
data set that we believe has a great deal of interest in itself.
Specifically, we used “named-entity” extraction algorithms
to derive a name graph from the World Wide Web. In this
graph, the nodes represent names of people, and there is an
edge of weight w between two names if the names appear in
close proximity on w different web pages. Our data set con-
tains roughly 15 million distinct names, and about 96 million
distinct edges, drawn from over 500 million web pages. The
“name graph” is a valuable resource, because it can help
us find patterns, outliers, and connections. In Figure 1 we
show three connection subgraphs that were produced by an
interactive prototype system (described in Section 5.1) that
computes and displays good connection subgraphs in a few
seconds.

Although the discussion in this paper focuses on connec-
tion sub-graphs between persons, we also envision applying
it to graphs that describe relationships between arbitrary
pairs of entities, including persons, companies, products, or-
ganizations, species, documents, web sites, phone numbers,
etc. We expect that connection subgraphs will prove widely
useful in interactive data exploration systems.

The structure of the rest of the paper is as follows. In Sec-
tion 2 we describe some related work, and consider the prob-
lem of what constitutes a good objective function g. The de-
tails of our approach are presented in Sections 3 and 4, with
experimental results on the name graph in Section 5. We de-
scribe the interactive system in Section 5.1, and summarize
our conclusions and suggest future directions in Section 6.

2. RELATED WORK
The heart of this paper is how to find “good” connection

subgraphs. To our surprise, we have not found any work that
directly addresses this problem in the published literature.
There are well studied areas in graph theory and networks
that have some overlap on the surface, but none attacks this
problem. We review this work next, show why some “rea-
sonable” approaches perform poorly, and we briefly review
other related work.

The two most natural measures for choosing “good” paths
would be the shortest distance, and the maximum flow cri-
terion, in which the edge weights represent a maximum flow
on the edge. Both of these fail to capture a natural no-
tion of “best path” in social networks. Consider the graph
of Figure 2 with unit weights. In this case, the shortest
paths from s to t go through nodes 3 and 4, and both have
length 2. Notice however that node 4 has many edges, as
would be the case if the node represented a famous person
with many incidental connections. Thus, one would intu-
itively prefer the path through node 3, but this preference
is not captured by the traditional shortest path computa-
tion. Other distance functions in graphs[19, 22] match more
closely with our intuition of which paths are best for con-
veying a relationship, but it is important to stress that our
measure g prefers subgraphs that contain multiple possibly
overlapping paths where possible. Our goal is a good sub-
graph rather than a path or collection of paths.

If we instead treat connection subgraph generation as a

s t

1 2
3

4

...5
6 99

100

Figure 2: A simple network where both shortest
path and network flow fail to adequately model so-
cial relationships. With all edges having weight 1,
flow fails to distinguish between the paths s,1,2,t and
s,3,t, even though the latter is shorter. Total path
length fails to distinguish between the paths s,3,t
and s,4,t, even though path through 4 is diluted by
many extra connections.

maximum flow problem, we find that paths s,1,2,t and s,3,t
both carry 1 unit of flow, although we would intuitively pre-
fer the shorter path through node 3, since social relation-
ships tend to blur with distance. Thus both shortest paths
and network flow models fail to adequately capture the no-
tion of a “good” path in social networks, although both seem
related.

There has been considerable work on community detec-
tion [11, 9, 12]. However, reporting the “community” of two
remotely related nodes will force us to far exceed our bud-
get b of allowable edges, and in cases where the two people
belong to different communities, we are interested in rela-
tionships between their communities.

The main problem of this paper is also related to pre-
vious work on survivable networks (e.g., see [13]). There,
the objective function g is usually expressed as the count of
edge-disjoint or vertex-disjoint paths from the source to the
destination. This measure also fails to adequately model
social relationships, as the two paths in Figure 2 through
nodes 3 and 4 have the same survivability: each path ’dies’
with the deletion of one node or edge.

Other related work includes the PageRank [21] and per-
sonalized PageRank algorithms [15, 16]; graph clustering,
partioning, and matrix reordering [2, 4, 17, 23, 24]; elec-
trical circuits and random walks [3, 7, 22]; and influence
propagation [18]. “customer value” of a node [5]; and other
topics on sparse graphs [1, 6, 8, 20].

However, again, in all these references, we have not found
even the definition of the connection subgraph problem, let
alone an attempt to solve it.

3. OUR MEASURE OF GOODNESS
The approach that we propose is related to electrical cur-

rents in a network of resistors [7]. Let G(V, E) denote an
undirected weighted graph, and let C(e) denote the weight
of the edge e. We then interpret this graph as an electri-
cal network in which each edge e represents a resistor with
conductance C(e). In a nutshell, we propose to choose as
our connection subgraph the one that can deliver as many
units of electrical current as possible. There are a few subtle
traps, however, that can lead us astray. Let’s start with a
review of electricicty laws. Table 1 lists the symbols and

Angelina Jolie

Cameron Diaz

310.853

Natalie Portman

25.3912

155.247

Pamela Anderson
75.9919

Sandra Bullock

9.16875

Nicole Kidman

3810.63

2550

7895.32

8135.82

4182.48

125.441

168.138

30.9087

82.3276
18.3924

(a) Nicole Kidman to Cameron Diaz

Bill Gates

John Chambers

11.5352
Walter Hewitt14.6263 Carly Fiorina

Sam Palmisano

0.10762

Esther Dyson Louis Gerstner
5.38299

Michael Dell
2.29426

1.4527

Michael Capellas
1.86502

0.35396

Nicholas Negroponte
72.6528

37.4691

2.92542

2.9828

4.93193

3.92175

(b) Nicholas Negroponte to Sam Palmisano

Alan Turing

Gillian Anderson

0.9931 (1)

Harry Potter
1.995 (2)

Kate Winslet

1.996 (2)

Sharon Stone
0.6036 (881)

0.5765 (48)

0.23684 (94)

(c) Alan Turing to Sharon Stone

Figure 1: Results graphs from the interactive system. Edge weights indicate the relative strength of the
connection via our algorithm. In the bottom example, original edge weights are also shown in parentheses.

definitions used throughout the paper.

Symbol Definition

G(V, E) an undirected graph
V set of vertices
E set of edges

N Number of nodes
E Number of edges
deg(u) degree of node u

V (u) Voltage of node u
I(u, v) current on edge (u , v)
C(u, v) conductance of edge (u , v)
C(u) =

∑
v

C(u, v):
conductance of node u

Î(P) delivered current over “prefix path” P
CF (H) flow captured by subgraph H
s source node
t destination node
z ’universal sink’ node

Table 1: Symbols and Definitions

Suppose that we apply a voltage of +1 volt to the start
node s, and ground (0 volts) on the destination node t. Let
I(u, v) be the current flow from u to v and let V (u) denote
the voltage at u. Then we have Ohm’s law:

∀u, v : I(u, v) = C(u, v)(V (u)− V (v)) (1)

and Kirchhoff’s current law:

∀v 6= s, t :
∑

u

I(u, v) = 0 (2)

These laws uniquely determine all the voltages and cur-
rents, as the solution to a linear system:

V (u) =
∑

v

V (v)C(u, v)/C(u) ∀u 6= s, t (3)

(where C(u) =
∑

v
C(u, v) is the total conductance of edges

incident to the node u), with boundary conditions:

V (s) = 1, V (t) = 0 (4)

The voltages and currents of the resulting network have
fascinating connections to quantities related to random walks
along the graph. For example

Lemma 1. (See [7, p. 52]) Consider an electrical network
defined by (3), (4). Consider also all random walks on the
associated graph that (a) start from the destination node t
(b) end on the source node s (c) following an edge (u, v) with
a probability that is proportional to its conductance (C(u, v))
(d) without revisiting the destination node. (Zero or more
intermediate visits to the source node are permitted). Then,
the electric current I(u, v) is proportional to the net number
of times that such walks will traverse the edge (u, v).

It is tempting to use this formulation of current flow as
our measure of goodness for a connection graph, namely the
subgraph of a given size that maximizes the total current∑

v
I(v, t) flowing into the destination node. However, that

has a flaw: consider the graph of Figure 2, and compare the

two paths s → 3 → t and s → 4 → t. In the above setting,
they will both carry the same current of 1/2 Amperes each,
while we would like the path through node 3 to be more
favorable. To compensate for this, we propose to follow [22],
and introduce a universal sink node z that is grounded:

V (z) = 0 (5)

and is connected to every node u of the graph with an edge
of conductance

C(u, z) = α
∑
w 6=z

C(u, w) (6)

for some parameter α > 0. We used α=1, but nearby choices
make little difference. The universal sink absorbs a positive
proportion of the current that flows into any given node, in a
way reminiscent of ’tax’. Thus, it penalizes a node with high
degree, because it taxes it not only directly, but multiple
times as well, indirectly, through its neighbors. An extra
fringe benefit is that it also heavily penalizes long paths,
exactly because it taxes them repeatedly for every node that
the path contains.

The intuition of Lemma 1 carries through, with just a few
slight modifications, namely, that the random walks are also
forbidden from reaching the universal sink. In any case, sub-
graphs that carry much current are exactly the subgraphs
we want to include. More accurately, we want a subgraph
that, after the ’taxation’ by the universal sink z, is respon-
sible for delivering high current to the sink t. This is the
concept of Delivered Current, which we formalize next in
subsection 4.1.

4. OUR ALGORITHMS
The goodness function g(H) that we propose is exactly

the total delivered current that the chosen subgraph H car-
ries from source to sink, after the repeated taxations by the
universal sink z. We are now faced with the problem of
finding good connection subgraphs under that measure. We
can reduce the problem to that of calculating the currents
on the original graph, followed by a process that extracts
a subgraph that carries high current to t. We refer to the
latter problem as that of display generation, and we dis-
cuss it in detail in Section 4.1. Calculating current flows
with a universal sink is feasible even for very large graphs,
but not in an interactive environment. In order to address
this problem, we propose an optional preprocessing step,
called candidate generation. The idea is to quickly produce
a moderate-sized graph, by removing nodes and edges that
are too remote from s and t to influence the solution. In our
interactive system, this is what allows us to produce good
connection subgraphs within a few seconds. We describe the
candidate generation process in Section 4.2.

4.1 Display Generation
The display generator takes as input the weighted, undi-

rected graph G and the flows I(u, v) on all (u, v) edges, and
produces as output a small, unweighted, undirected graph
Gdisp (≡ H) suitable for display to the user. Typically, we

expect Gdisp to have 20–30 nodes. Results showing how well

this algorithm performs are given in Section 5.
As we mentioned earlier, the proposed goodness measure

is the “delivered current” that the chosen subgraph Gdisp
carries from source s to sink t. Notice that each atomic unit

of flow (i.e., each electron) must travel along a single path;
it is thus possible to decompose the flow into paths. This
will allow us to formalize the notion of current delivered by a
subgraph. We require the following sequence of definitions.

Definition 1. Node v is downhill from u (u →d v), if
I(u, v) > 0, or, identically, V (u) > V (v).

We can then define Iout(u), the total flow leaving node u:

Definition 2. Total out-flow from node u: Iout(u) =∑
{v|u→v} I(u, v).

Definition 3 (Prefix path). A prefix path is any down-
hill path P that starts from the source s, that is, P = (s =
u1, . . . , ui) where uj →d uj+1

Obviously, a prefix path has no loops, because of the down-
hill requirement.

Definition 4 (Delivered current). The delivered cur-

rent Î(P) over a prefix-path P = (s = u1, . . . , ui) is the vol-
ume of electrons that arrive at ui from s, strictly through
P. Formally, we define Î() inductively as follows, beginning
with a single edge as base case:

Î(s, u) = I(s, u)

Î(s = u1, . . . , ui) = Î(s = u1, . . . , ui−1)
I(ui−1, ui)

Iout(ui−1)

In words, to estimate the delivered current to node ui through
path P, we are pro-rating the delivered current to node ui−1

proportionately to the outgoing current I(ui−1, ui). We are
now ready to define the current delivered by a subgraph; no-
tice that this definition is intentionally quite different from
the current delivered by applying voltages and computing
current flows on the subgraph alone.

Definition 5 (Captured flow). We say the captured
flow CF (H) of a subgraph H of G is the total delivered cur-
rent, summed over all source-sink prefix paths that belong to
H.

CF (H) ≡ g(H) =
∑

P=(s,...,t)∈H
Î(P) (7)

4.1.0.1 Example.
Consider the graph shown in Figure 3. For simplicity of

exposition, and without loss of generality, we do not have a
universal sink z (that is, we set α=0). After the voltages of
the source and sink have been fixed to 1 and 0 respectively,
the resulting voltages are shown for each other vertex. These
voltages induce currents along each edge as shown. There
are five downhill source-to-sink paths in the graph. These
paths, with their delivered current are shown in Table 2.
The path that delivers the most current (and the most cur-
rent per vertex) is s → b → t. We can compute the 2/5A
delivered by this path by observing that, of the 0.5A that
arrive at vertex b on the s → b edge, 1/5 depart towards
vertex c, while 4/5 departs towards vertex t. 4/5 × 0.5A
gives the 2/5A we seek.

Consider the {s, b, c, t} subgraph. We can compute its
captured flow by adding the delivered current of all paths
that travel exclusively through the subgraph; namely, s →
b → c → t and s → b → t; these paths together capture 2/5
+ 1/10 = 0.5A of total current. We observe that this is one
of two optimal 4-vertex subgraphs that could be produced.

1

s

a

b

c

t

1

1

11

1
1

(a) original network

1/2

3/8

1

5/8

1/2

0

1/4

1/8
3/8

1/2

3/8
1/8

(b) voltages and amperages

1/10

s

a

b

c

t
2/5

(c) paths with delivered current

Figure 3: A sample network, showing voltages, cur-
rent, and paths with delivered current.

s → b → t 2/5
s → a → c → t 1/4
s → b → c → t 1/10
s → a → b → t 1/10
s → a → b → c → t 1/40

Table 2: Current flow along paths in Figure 3

4.1.0.2 Algorithm.
Our optimization problem is now to find a subgraph that

maximizes the captured flow over all subgraphs of its size.
For this we apply a greedy heuristic, as follows. First, it
initializes an output graph to be empty. Next, it iteratively
adds end-to-end paths (i.e., from source s to sink t) to the
output graph. Since the output graph is growing, a new
path may include vertices that are already present in the
output graph; the algorithm will favor such paths. Formally,
at each step the algorithm adds the path with the highest
marginal flow per capita. That is, it chooses the path P that
maximizes the ratio of flow along the path, divided by the
number of new vertices that must be added to the output
graph.

Notice that the inductive definition of delivered current
given above could easily be computed using dynamic pro-
gramming. We will modify this computation in order to
compute the path that maximizes our measure.

We begin with a definition of entries in our dynamic pro-
gramming table Dv,k (for “delivery matrix”), to be inter-
preted in the context of a partially built output graph.

Definition 6. Dv,k is the current delivered from s to v
along the prefix path P = (s = u1, . . . , u` = v) such that:

1. P has exactly k vertices not in the present output graph

2. P delivers the highest current to v among all such paths
that end at v.

To compute D we exploit the fact that the electric current
flows I(*,*) form an acyclic graph. Formally, we arrange the
vertices into a sequence u1 = s, u2, u3, . . . , t = un such that
if node uj is downhill from ui (ui →d uj) then uj follows
ui in our ordering (i < j). That is, the nodes are sorted in
descending order of voltage, and so electric current always
flows from left to right in the ordering. We will fill in the
table D in the order given by the topological sort above,
guaranteeing that when we compute Dv,k, we will already
have computed Du,∗ for all u →d v. The entries of D are
computed as follows:

Algorithm 1 (Display Graph Generation).
Initialize output graph Gdisp to be empty

Let P be the maximum allowable path length
(trivially, the target size of the display graph)

While output graph is not big enough:
For i ← [1..|G|]:

Let v = ui

For k ← [2..P]:
If v is already in the output graph

k′ = k
else k′ = k − 1
Let Dv,k = maxu|u→dv(Du,k′I(u, v)/Iout(u))

Add the path maximizing Dt,k/k, k 6= 0

Intuitively, I(u, v)/Iout(u) represents the fraction of flow
arriving at u that continues to v. Multiplying this by Du,k′

gives the total flow that can be delivered to v through a sim-
ple path. The path maximizing our measure is then the path
that maximizes Dt,k/k over all k 6= 0; it can be computed
by tracing back the maximal value of D from t to s.

4.2 Candidate Generation
As mentioned earlier, computing the voltages and currents

on a huge graph can be very expensive, and thus real-time
responses are impossible. To create a real-time variant of
the system, we propose an optional precursor step which we
call candidate generation. This step extracts a subgraph of
the original graph which we call the candidate graph. The
extraction algorithm must quickly produce from the original
graph a subgraph that contains the most important paths.
This subgraph is then treated as the full graph for the re-
mainder of the algorithm: current flows are computed as
usual but on the candidate graph, and the display generator
is applied to the result.

Formally, the candidate generation process takes a s and t
vertex in the original graph G, and produces a much smaller
graph (Gcand) by carefully growing neighborhoods around
s and t. The focus of the expansion is on recall rather than
precision; during display generation we will remove any spu-
rious regions of the graph. As we will show, using candidate
generation it is possible to attain performance close to opti-
mal with a latency that is orders of magnitude smaller.

4.2.0.3 The Algorithm.
In the framework, candidate generation algorithms strate-

gically expand the neighborhoods of s and t until there is a
significant overlap. As the algorithm proceeds, it will ex-
pand s, discovering other candidate vertices that it may
choose to expand later. Our underlying assumption is that
the graph is stored, say, in edge-list format, which makes
node expansions inexpensive.

Let D(s) be the set of vertices first discovered through a
series of expansions beginning at s; we say that s is the root
of all vertices in D(s). We define E(s) as the set of expanded
vertices within D(s); that is, they have been accessed in a
data structure, and their neighbors are now known. Like-
wise, let P (s) be the set of pending vertices within D(s) that
have not yet been expanded. Similarly, define D(t), E(t),
and P (t). Note that D(s) is disjoint from D(t) since each
vertex is discovered only once, by expanding a vertex whose
root is either s or t. Recall that for weighted graphs, we
use C(u, v) as the weight of the edge from u to v. We de-
fine deg(u) to be the degree (number of neighbors) of u.
Algorithm 2 gives the high level pseudocode.

Algorithm 2 (Candidate Generation). Given a graph
G that is weighted and undirected, and two vertices s and t,
find Gcand ⊂ G which is much smaller than G but contains
most of the interesting connections between s and t.

Set P (s) = {s} and P (t) = {t}.
While not stoppingCondition():

// pick v, the most promising node of P (s) ∪ P (t)
v ← pickHeuristic()
// and expand it
Let r be the root of v
Expand v, moving it from P (r) to E(r)
Add all new neighbors of v to P (r)

Thus, the details of the algorithm lie in the process of
deciding which node to expand next, and when to termi-
nate expansion. Our algorithm repeatedly expands carefully
selected unexpanded nodes, chosen by the pickHeuristic(),
until a stopping condition stoppingCondition() is reached.
These are the two major routines, and we describe a specific
heuristic for them in the Appendix. In effect, pickHeuristic()
strives to suggest a node for expansion, estimating how much
delivered current this node will carry. Thus, the heuristic
favors nodes that are (a) close to the source s or the sink t
(b) with strong connections (high conductance) and (c) low
degree, to avoid the ’famous-node’ effect (recall node 4 of
Figure 2).

The stoppingCondition() puts limits on the size of the
output graph Gcand (count of expansions, count of distinct
nodes discovered, etc).

4.3 Computational Complexity
The calculation of currents on a network with a universal

sink requires the solution of the linear system (3) and (4).
For a graph with N nodes and E edges, this can be done
by direct methods in O(N3) operations, but iterative meth-
ods will often perform much better on sparse graphs. For a
graph with E edges, we would expect to perform O(E) op-
erations per iteration, and the number of iterations depends
on the gap between the largest eigenvalue and the second

largest eigenvalue. In the case of the names graph we ob-
served a fairly rapid rate of convergence, and this can be
expected for many other social network graphs as well.

The display generator takes O(ekb) time, and O(vk) space,
where v is the number of vertices in the input graph, e is the
number of edges, k is the maximum length of any allowed
s-t path, and b is the budget, or desired number of vertices
in the display graph.

The candidate generator runs until its termination condi-
tions are met, performing a single disk seek per expansion.
Timings are provided in the appendix. Typically in our
interactive system, the candidate generator requires 1-1.5
seconds to run, on a graph with ≈ 105 edges.

5. EXPERIMENTAL RESULTS
In this section we describe components of our prototype

system and evaluate the performance of the various com-
ponents. First, we give the experimental set up (data and
queries), and then we describe our results. Our experiments
were designed to answer the following questions:

• How good is the proposed “goodness” function g(H)?
• Does our display generator algorithm capture most of

the delivered flow?
• How well does the candidate generation algorithm per-

form, and which settings of parameters work best?

5.1 Experimental setup
We started from a text analytics system called WebFoun-

tain[14] that has been under development at IBM Almaden
Research Center. This system routinely crawls the web and
collects documents, which are further processed (“named-
entity” extraction modules, cleanup of homonyms, synonyms
etc.). Our “name graph” was derived from approximately
500 million web pages, by spotting names, and adding an
edge between them whenever two names occurred within
a window of approximately ten words of one another. If
the pair of names generates edges from w distinct web-
pages, then this gets collapsed to a single edge of weight
w. The resulting graph contains N=15,020,632 names, with
E=96,689,078 unique edges between them.

Software architecture.Our system was implemented with
a web-based interface, in perl, python, C++, Apache, and
php, and it runs on a Pentium class machine with a 2GHz
processor running Linux 2.4. Users can submit pairs of
names from our web interface. The system then runs the
’candidate generation’, the voltage computations and the
’display generation’, and displays the resulting connection
graphs. We used the GraphViz system [10] for the graph-
layouts. Moreover, our system provides click-able nodes and
edges: on a click our system displays additional information
(names of neighbors, web site for this person, etc)

Query pairs.In order to test our algorithms, we selected
a set of ten computer scientists and mathematicians, and
a set of seven actors and actresses. We defined the query
pairs shown in Table 3 for use in the experiments. We also
considered three termination conditions for the candidate
generator, C-small , C-medium, and C-large, which result
in small, medium and large candidate graphs Gcand. Their
exact details are in the Appendix.

5.2 Goodness ofg — case studies

Name Description # pairs
AA Both nodes are actors/actresses 45

CSM Both nodes are CS/mathematicians 21
Cross One node from each set 70

Table 3: Query pairs for experimental evaluation.

Figure 1 shows the graphs output by our system for three
representative test cases. Figure 1(a) shows a small dis-
play graph linking two movie actresses, Nicole Kidman and
Cameron Diaz. In this example there are strong links, with
high current, as expected.

Figure 1(b) shows a 10-node display graph for the con-
nections from MIT Professor Nicholas Negroponte to IBM
CEO Sam Palmisano. In this case the strongest connec-
tion to Negroponte is through Esther Dyson, as evidenced
by the fact that they have both published articles in Wired
Magazine, have been mentioned together in the New York
Times, and have authored books that are compared to each
other in Amazon. The second node in the strongest path
is Louis Gerstner, the IBM CEO that Palmisano replaced.
The rest of the paths are weaker, involving the CEOs of
most major computer companies: HP (Fiorina), Microsoft
(Gates), Cisco (Chambers), and Dell (Dell). Notice that our
goodness function led to results that make intuitive sense:
the co-occurrences of Palmisano with the other CEOs is ex-
pected, but not as strong and informative as the connection
with Dyson.

The final example 1(c) shows the network connecting Alan
Turing to Sharon Stone, who are two people from largely
disjoint communities. Without looking at the graph, one
would expect to find weak paths, if any at all. The result is
surprising: there is a connection, and there is even a fairly
strong connection through the actress Kate Winslet, because
she starred in a movie about the Engima cipher machine, in
which Alan Turing played a part durign his lifetime. We also
see a connection through Gillian Anderson because she stars
in a science fiction television show that is popular among a
technical audience. We note also that Alan Turing has di-
rect connections to Alan Thicke, Alan Alda, and Bruce Lee
(all of whom have direct connections to Sharon Stone), but
these edges were discarded as carrying too little current.
This example is also interesting in that they come from dis-
tinct communities, and both have high degree (Turing has
1,249 neighbors and Stone has 6,014 neighbors). Again, our
goodness function g() led to results that are sensible and
revealing.

5.3 Evaluation of Display Generation
In this section, we evaluate the performance of the display

generator by measuring the delivered current as a function
of the budget b of allowable nodes.

Figure 4 shows the fraction of delivered current as a func-
tion of the size of the display graph for four representative
examples. The candidate generator for these examples was
run using a stopping condition that resulting in 15–25K to-
tal edges in the candidate graph. As the figure shows, the
curve quickly flattens, and a reasonably-sized display graph
delivers the vast majority of the total current.

Table 4 shows aggregate results over a larger set of ex-
periments and candidate generator stopping conditions. Ta-

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

fr
ac

tio
n

of
 a

m
pe

ra
ge

number of nodes

Kleinberg-Newell
Rivest-Hoffman

Turing-Stone
Kidman-Diaz

Figure 4: Fraction of amperage captured by display
generator as a function of b (budget of allowed count
of nodes). Notice the sharp rise, and the diminishing
returns, in all cases.

AA CSM Cross
C-small 3.97 2.71 3.32
C-medium 4.59 6.4 5.08
C-large 28.68 24.23 24.32

(a) Total Elapsed Time (sec)

AA CSM Cross
C-small 618.47(99) 1.31(91) 0.76(86)
C-medium 625.52(99) 1.27(87) 0.78(83)
C-large 727.26(94) 1.23(83) 0.64(79)

(b) Current Measurements (Amperes)

Table 4: Comparison of times and currents across
three datasets and three stopping conditions. Values
in parentheses represent percentage of total current
delivered by display graph of size 20.

ble 4(b) shows total current delivered in the candidate graph,
and then in parentheses the fraction of that current deliv-
ered in a 20-node display graph. As stopping conditions
change and the expansion algorithm is allowed to proceed
further, the display generator captures a smaller fraction of
the current. A more surprising bias arises from the choice
of dataset. For Actors and Actresses, the display generator
captures the vast majority of the flow, suggesting that while
this neighborhood is extremely dense, nonetheless there are
a few nodes that are responsible for most of the flow. Com-
puter Scientists and Mathematicians fare slightly worse; for
condition C-medium, 87% of the flow is captured on average,
down from 99%. The Cross case is again slightly worse, val-
idating the intuition that relationships between nodes that
are not naturally related come about due to a larger num-
ber of serendipitous low-flow paths. Nonetheless, overall,
the display generator is able to capture the vast majority of
current with a relatively small output graph.

Over all these experiments, the first b=20 nodes routinely
carry most of the current. To conclude, the display genera-
tor seems to be doing a good job of capturing flow from the
much larger candidate graph.

5.4 Evaluation of Candidate Generation Heuris-
tics

In this section we summarize the results of experiments
on different distance measures and stopping conditions for
the candidate graph. Details are given in the appendix.
The stoppingCondition() shows exactly the diminishing re-
turns that we observed above; the heuristics for node expan-
sion (pickHeuristic()) usually perform about the same, with
the surprising exception that one natural-sounding heuristic
performs quite poorly—see Section A.2 for details.

Stopping Conditions.Table 4 shows the average runtime
of the algorithm for each data set and each stopping con-
dition. Most interestingly, more resources help for Actors
& Actresses, but not Computer Scientists & Mathemati-
cians or for relationships between the two groups (“Cross”).
Nodes in the AA region of the graph tend to have very high
degrees, and may therefore require significantly more ex-
pansion to find the good paths. For the other regions, it
is possible to find the most important paths with signifi-
cantly less computational effort. The timings given in the
figure are for all three stages of the algorithm in aggregate.
A deeper exploration of the timing details shows that can-
didate generation typically requires more than 50% of the
overall effort, with the remainder roughly split between volt-
age computation and display generation. As a takeaway, it
is quite feasible to find “good” graphs in the most important
CMS case (representing well-connected individuals without
a massive media presence) over a 100M edge graph in un-
der three seconds on a single machine without careful code
tuning or optimization.

6. CONCLUSIONS
In this work, we defined and addressed the problem of

“Connection Graphs”, small graphs that convey much in-
formation about the relationship of a pair of nodes. In addi-
tion to posing the problem, additional contributions are the
following:

• We proposed the “delivered current”, a novel, intu-
itive way to measure the goodness of a “Connection
Graph”. We showed that straightforward methods
like network flow and traditional shortest paths lead
to poor, counterintuitive answers while our measure
naturally gives high preference to paths that are more
likely to occur in a random walk from the source to
the sink (with the very careful addition of a “universal
sink” node).

• We provide the display graph generation algorithm (Al-
gorithm 1), a dynamic-programming algorithm that
attempts to find the best “Connection Graph” with
≤ b nodes

• We provide the candidate graph generation algorithm
(Algorithm 2), with fast heuristics that can handle
huge, disk-resident graphs, in near-real time, while still
maintaining high accuracy.

Moreover, we implemented our algorithms in a working
prototype, complete with an interactive web-based interface,
on a real graph that we derived from the Web. The graph
has 15 Million nodes and 96 Million edges.

Directions for future research include generalization to
graphs that contain more than one type of entity (eg., ’peo-
ple’, ’companies’ and ’products’); and generalization to con-

nection subgraphs between more than two nodes.
Acknowledgements: We would like to thank Madhukar

Korupolu for his help with the name graph dataset and his
observations on the Display Generator, and Chris Palmer
for his feedback on the voltage computation.

7. REFERENCES
[1] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of

the world wide web. Nature, (401):130–131, 1999.

[2] U. Brandes, M. Gaertler, and D. Wagner.
Experiments on graph clustering algorithms. In Proc.
11th Europ. Symp. Algorithms (ESA ’03), LNCS
2832, pages 568–579. Springer-Verlag, 2003.

[3] A. K. Chandra, P. Raghavan, W. L. Ruzzo,
R. Smolensky, and P. Tiwari. The electrical resistance
of a graph captures its commute and cover times.
STOC, pages 574–586, 1989.

[4] I. S. Dhillon, S. Mallela, and D. S. Modha.
Information-theoretic co-clustering. In Proc. ACM
KDD, Washington, DC, August 24-27 2003.

[5] P. Domingos and M. Richardson. Mining the network
value of customers. Proc. ACM KDD, pages 57–66,
2001.

[6] S. Dorogovtsev and J. Mendes. Evolution of networks.
Advances in Physics, 51:1079–1187, 2002.

[7] P. Doyle and J. Snell. Random walks and electric
networks, volume 22. Mathematical Association
America, New York, 1984.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology.
SIGCOMM, pages 251–262, Aug-Sept. 1999.

[9] G. Flake, S. Lawrence, C. L. Giles, and F. Coetzee.
Self-organization and identification of web
communities. IEEE Computer, 35(3), Mar. 2002.

[10] E. . Gansner and S. C. North. An open graph
visualization system and its applications to software
engineering. Software - Practice and Experience,
30:1203–1233, 1999.

[11] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring
web communities from link topology. In Ninth ACM
Conference on Hypertext and Hypermedia, pages
225–234, New York, 1998.

[12] M. Girvan and M. E. J. Newman. Community
structure is social and biological networks.

[13] M. Grötschel, C. L. Monma, and M. Stoer. Design of
survivable networks. In Handbooks in Operations
Research and Management Science 7: Network
Models. North Holland, 1993.

[14] D. Gruhl, L. Chavet, D. Gibson, J. Meyer,
P. Pattanayak, A. Tomkins, and J. Zien. How to build
a WebFountain: An architecture for very large-scale
text analytics. IBM Systems Journal, 43(1):64–77,
2004.

[15] T. H. Haveliwala. Topic-sensitive pagerank. Proc.
WWW, pages 517–526, 2002.

[16] G. Jeh and J. Widom. Scaling personalized web
search. WWW, pages 271–279, 2003.

[17] G. Karypis and V. Kumar. Parallel multilevel k-way
partitioning for irregular graphs. SIAM Review,
41(2):278–300, 1999.

[18] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing

the spread of influence through a social network. In
Proc. ACM KDD, Washington, DC, 2003.

[19] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In Proc. CIKM, 2003.

[20] M. E. J. Newman. The structure and function of
complex networks. SIAM Review, 45:167–256, 2003.

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the
web. Technical report, Stanford Digital Library
Technologies Project, 1998.

[22] C. R. Palmer and C. Faloutsos. Electricity based
external similarity of categorical attributes. Seoul,
South Korea, April-May 2003.

[23] S. van Dongen. Graph Clustering by Flow Simulation.
Ph.D. thesis, University of Utrecht, May 2000.

[24] S. Virtanen. Clustering the chilean web. LA-WEB
2003, Nov. 2003.

APPENDIX

A. DETAILS ON CANDIDATE GENERATION
We begin by describing the particular heuristics used in

the candidate generator, after which we then report on some
experiments comparing different parameter settings, and draw
conclusions regarding the appropriate choice.

A.1 Heuristics and justifications

A.1.1 pickHeuristic()

Recall that the pickHeuristic() function chooses the next
node to expand during candidate generation. We do this
within a framework based on a distance function on the in-
process candidate graph. Among the pending nodes, we al-
ways choose for expansion the one that is closest to its root,
in some sense. There are several reasonable ways to define
closeness. We introduce a (possibly asymmetric) length on
edges, and define the distance between two nodes u and v
as the minimum over all paths from u to v of the sum of
the lengths of the edges along the path. Thus, the decision
about what to expand next is encoded as a weighted, di-
rected, graph distance. This formulation tends to focus on
particular types of expansions, and does not allow others,
but has the advantage that we know the exact shortest path
from any expanded node to its root.

We considered eight definitions of the length of an edge
from u to v, based on three flags that can each be set two
ways. Generally, the distance is given by f(n/d), where the
three flags control the values of f , n, and d, as follows:

Numerator: If the distance is degree-weighted then n =
deg2(u), otherwise n = deg(u).

Denominator: If the distance is count-weighted then d =
C(u, v)2, otherwise d = C(u, v)

Multiplicative: If the distance is multiplicative then f(x) =
log(x), else f(x) = x.

Thus, the basic distance function is d(u)/C(u, v), and
the degree-weighted, count-weighted, multiplicative distance
function is log(deg2(u)/C(u, v)2).

We give a brief intuition for these definitions. If the graph
were not weighted then the basic distance function would be
deg(u). A more natural measure might be deg(u) + deg(v),
but we haven’t yet expanded v so we don’t have access to

its degree; thus, we cannot include the deg(v) term in our
definition, and we must instead employ an asymmetric dis-
tance. The distance function as given treats lower-degree
nodes as closer, so the expansion is designed to discover
longer paths through low-degree nodes rather than shorter
paths through high-degree nodes. Recall however that our
graph is weighted, and that nodes with high weight edges
should be considered close together because they have a rel-
atively strong connection. This explains the presence of the
term C(u, v), corresponding to the weight of the edge.

Finally, we motivate the notion of multiplicative distance
rather than traditional additive distance. By taking the log-
arithm of the edge weight and adding these values along
a path, we compute the logarithm of the product; since
the logarithm is monotonically increasing, comparisons of
path lengths result as they would for multiplication of edge
weights. Multiplication is a reasonable model here for the
following reason. Consider a path in which all edges have
weight 1. If the degrees of vertices along the path are
d1, d2, . . . , dk then the number of vertices reachable by ex-
panding all paths of the given length in a tree with branch-
ing factor di at level i would be R =

∏
i
di. If the sink were

uniformly located among all such nodes, the probabilty of
reaching the sink would be proportional to R. Thus, in
an idealized model, lower multiplicative distance represents
nodes that are “closer” to the root in the sense that a se-
quence of expansions with the given degree would reach a
smaller set of vertices.

Results for these various distance functions are shown in
Section A.2.

A.1.2 Termination condition -stoppingCondition()

Finally, we must discuss termination conditions. We de-
fine three thresholds for termination; the algorithm will stop
as soon as any threshold is exceeded. First, we adopt a
threshold on total expansions, to limit the total number of
disk accesses. Second, we adopt a larger threshold on dis-
covered vertices, even if those vertices have not yet been
expanded, to limit memory usage. And finally, we adopt a
threshold on number of cut edges (edges between D(s) and
D(t)), as a measure of the connectedness of the set of nodes
with the src as a root with the set of nodes with the sink as
a root.

This completely characterizes the candidate generation al-
gorithm.

A.2 Evaluation of distance functions
As mentioned, we considered three termination condi-

tions, C-small , C-medium, and C-large, which result in
small, medium and large candidate graphs Gcand. Recall
that the algorithm terminates when any of three thresh-
olds is exceeded: the number of cut edges, the number of
expanded vertices, and the number of discovered vertices.
The termination conditions we considered are described in
Table 6. Finally, we considered all eight distance measures;
the eight different measures are derived by turning on or
off each of three different settings: degree-weighted, count-
weighted, and multiplicative.

The number of cases in the overall experimental design
is therefore 8 × 3 × (45 + 21 + 70) = 3264. For each case,
we ran the candidate generator and measured wallclock time
and number of edges in the resulting graph. We then ran the
voltage computation on the candidate graph and measured

Additive Multiplicative
deg deg2 deg deg2

Case wuv w2
uv wuv w2

uv wuv w2
uv wuv w2

uv

C-small(AA) 620.97(99) 620.97(99) 620.97(99) 620.97(99) 630.29(100) 582.32(99) 620.97(99) 630.29(100)
C-small(CSM) 1.39(89) 1.28(95) 1.42(91) 1.42(91) 1.4(88) 0.68(98) 1.49(84) 1.4(88)
C-small(Cross) 0.84(85) 0.83(86) 0.56(91) 0.84(85) 0.91(83) 0.52(89) 0.69(88) 0.91(83)
C-medium(AA) 620.97(99) 620.97(99) 620.97(99) 620.97(99) 642.71(99) 613.88(99) 620.97(99) 642.71(99)
C-medium(CSM) 1.32(87) 1.23(94) 1.37(89) 1.35(87) 1.36(84) 0.78(98) 1.37(76) 1.36(84)
C-medium(Cross) 0.78(85) 0.76(86) 0.52(85) 0.78(85) 0.85(83) 1.06(72) 0.64(81) 0.85(83)
C-large(AA) 745.47(93) 742.35(93) 736.63(93) 741.8(94) 732.1(94) 634.52(99) 753.11(92) 732.1(94)
C-large(CSM) 1.21(83) 1.2(91) 1.28(88) 1.25(87) 1.23(80) 1.21(86) 1.21(66) 1.23(80)
C-large(Cross) 0.59(86) 0.68(85) 0.39(79) 0.58(85) 0.48(85) 1.56(57) 0.35(72) 0.48(85)

Table 5: Comparison of distance measures. Columns represent distance measures, as defined in Section A.1.1.
Rows represent stopping conditions and datasets. Values in each cell are the current delivered through the
candidate graph, with the value in parentheses representing percentage of this current captured in the display
graph.

Condition Cut edges Expanded Known

C-small 500 500 10000
C-medium 2000 2000 20000

C-large 10000 50000 1000000

Table 6: Candidate Generation termination condi-
tions

wallclock time and total current. Finally, we ran the display
generator and measured wallclock time and total captured
current in the display graph.

A.2.1 Distance Measures
Table 5 compares total current delivered across the eight

different distance measures we employed.
First, we consider distance measures for candidate gener-

ation, show in Table 5. We observe that as the algorithm is
given more resources (ie, as the stopping condition changes),
the best distance measure also changes. In fact, there are
cases where normal or count-weighted, normal or degree-
weighted, and additive or multiplicative distance measures
are preferred. However, there are a few specific recommen-
dations that we can make.

First, we consider our three data cases, which represent
three common types of queries:

CSM: Source and sink are connected, and live in a net-
work of medium to sparse connectivity. This is the
most common case for applications of the algorithm.
In this case, degree-weighted additive distance performs
best, but in fact all measures perform comparably with
one exception: count-weighted multiplicative distance
performs horribly in stopping conditions C-small and
C-medium. This suggests that when resources are lim-
ited, a few very strong edges may initially bias the
search in inappropriate directions.

AA: Individuals are connected, and live in a very dense
network. In all stopping conditions, the eight mea-
sures perform within 5% of one another. The very low-
resource C-small performs as well as C-medium, but
the much higher resource thresholds of C-large finds
graphs that are roughly 15% better in terms of deliv-
ered current. Offsetting this improved current, how-

ever, is an average running time that increases by a
factor of 3-10.

Cross: Source and sink have no “natural” connections. In
this case, count-weighted multiplicative distance dra-
matically outperforms all other measures in stopping
conditions C-medium and C-large, suggesting that fo-
cusing heavily on stronger paths may be the best way
to find connections between a source and sink that are
simply not well-connected.

Overall, we observe that the simplest distance measure
(“normal” distance) never performs the best, and normal
multiplicative distance performs well in all cases except for
the somewhat unusual high-resource Cross condition in which
count-weighting should be introduced.

