
Self-Similarity In the Web

STEPHEN DILL, RAVI KUMAR, KEVIN S. MCCURLEY, SRIDHAR
RAJAGOPALAN, D. SIVAKUMAR, and ANDREW TOMKINS
IBM Almaden Research Center, San Jose

Algorithmic tools for searching and mining the Web are becoming increasingly sophisticated and
vital. In this context, algorithms that use and exploit structural information about the Web perform
better than generic methods in both efficiency and reliability.

We present an extensive characterization of the graph structure of the Web, with a view to
enabling high-performance applications that make use of this structure. In particular, we show
that the Web emerges as the outcome of a number of essentially independent stochastic processes
that evolve at various scales. A striking consequence of this scale invariance is that the structure
of the Web is “fractal”—cohesive subregions display the same characteristics as the Web at large. An
understanding of this underlying fractal nature is therefore applicable to designing data services
across multiple domains and scales.

We describe potential applications of this line of research to optimized algorithm design for
Web-scale data analysis.

Categories and Subject Descriptors: H.3.5 [Information Storage and Retrieval]: Information
Search and Retrieval—information filtering

General Terms: Experimentation, Measurement, Theory, Verification

Additional Key Words and Phrases: Fractal, graph structure, online information services, self-
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1. INTRODUCTION

As the the size of the Web grows exponentially, data services on the Web are
becoming increasingly complex and challenging tasks. These include both basic
services such as searching and finding related pages, and advanced applications
such as Web-scale data mining, community extraction, constructions of indices,
taxonomies, and vertical portals. Applications are beginning to emerge that are
required to operate at various points on the “petabyte curve”—billions of Web
pages that each have megabytes of data, tens of millions of users in a peer-to-
peer setting each with several gigabytes of data, etc. The upshot of the rate
and diversity of this growth is that data service applications for collections of
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hyperlinked documents need to be efficient and effective at several scales of
operation. As we will show, a form of “scale invariance” exists on the Web that
allows simplification of this multiscale data service design problem.

The first natural approach to the wide range of analysis problems emerging
in this new domain is to develop a general query language to the Web. There
have been a number of proposals along these lines [Mendelzon et al. 1997;
Abiteboul et al. 1997; Spertus 1997]. Further, various advanced mining opera-
tions have been developed in this model using a Web-specific query language
like those described above, or a traditional database encapsulating some do-
main knowledge into table layout and careful construction of SQL programs
[Chakrabarti et al. 1999a; Spertus and Stein 1998; Arocena et al. 1997].

However, these applications are particularly successful precisely when they
take advantage of the special structure of the document collections and the
hyperlink references among them. An early example of this phenomenon in the
marketplace is the paradigm shift witnessed in search applications—ranking
schemes for Web pages were vastly improved when link-based analysis was
added to more traditional text-based schemes [Kleinberg 2000; Brin and Page
1998].

The success of these specialized approaches naturally led researchers to seek
a finer understanding of the hyperlinked structure of the Web. Broadly, there
are two (very related) lines of research that have emerged. The first one is more
theoretical, and is concerned with proposing stochastic models that explain the
hyperlink structure of the Web [Kumar et al. 2000; Barabasi and Albert 1999;
Aiello et al. 2000]. The second line of research [Broder et al. 2000; Barabasi
and Albert 1999; Adamic and Huberman 1999; Kumar et al. 1999a] is more
empirical; new experiments are conducted that either validate or refine existing
models.

There are several driving applications that motivate (and are motivated by)
a better understanding of the neighborhood structure on the Web. In particu-
lar, the “second generation” of data service applications on the Web—including
advanced search applications [Chakrabarti et al. 1998a; Chakrabarti et al.
1998b; Bharat and Henzinger 1998], browsing and information foraging
[Botafogo and Shneiderman 1991; Carriere and Kazman 1997; Chakrabarti
et al. 1999b; Pirolli et al. 1996; Pitkow and Pirolli 1997], community extraction
[Kumar et al. 1999a], taxonomy construction [Kumar et al. 1999b, 2001]—have
all taken tremendous advantage of knowledge about the hyperlink structure of
the Web. As just one example, let us mention the community extraction algo-
rithm of [Kumar et al. 1999a]. In this algorithm, a characterization of degree
sequences within Web-page neighborhoods allowed the development and anal-
ysis of efficient pruning algorithms for a subgraph enumeration problem that
is in general intractable.

Even more recently, new algorithms have been developed to benefit from
structural information about the Web. Arasu et al. [2001] have shown how
to take advantage of the macroscopic “bow-tie” structure of the Web [Broder
et al. 2000] to design an efficient algorithmic partitioning method for cer-
tain eigenvector computations; these are the key to the successful search al-
gorithms of [Brin and Page 1998; Kleinberg 2000], and to popular database
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indexing methods such as latent semantic indexing [Deerwester et al. 1990;
Papadimitriou et al. 2000]. Adler and Mitzenmacher [2001] have shown how
the random graph characterizations of the Web given in Kumar et al. [2000]
can be used to compress the Web graph.

1.1 Our Results

In this article, we present a much more refined characterization of the structure
of the Web. Specifically, we present evidence that the Web emerges as the out-
come of a number of essentially independent stochastic processes that evolve at
various scales, all roughly following the model of Kumar et al. [2000]. A strik-
ing consequence is that the Web exhibits self-similarity, i.e., each thematically
unified region displays the same characteristics as the Web at large. In other
words, the Web is a “fractal.” This implies the following:

To design efficient algorithms for data services at various scales on the Web
(vertical portals pertaining to a theme, corporate intranets, etc.), it is sufficient
(and perhaps necessary) to understand the structure that emerges from one fairly
simple stochastic process.

We believe that this is a significant step in Web algorithmics. For example,
it shows that the sophisticated algorithms of Adler and Mitzenmacher [2001]
and Arasu et al. [2001] are only the beginning, and the prospects are, in fact,
much wider. We fully expect future data applications on the Web to leverage
this understanding.

Our characterization is based on two findings we report in this article. Our
first is an experimental result. We show that self-similarity holds for many dif-
ferent parameters, and also for many different approaches to defining varying
scales of analysis. Our second finding is an interpretation of the experimen-
tal data. We show that, at various different scales, cohesive collections of Web
pages (for instances, pages on a site or pages about a topic) mirror the struc-
ture of the Web at large. For example, consider the collection of Web pages that
have at least one geographical reference to a location in the western half of the
United States. We show that this cohesive collection of pages resembles the Web
at large in terms of various graph-theoretic characteristics and parameters.

Furthermore, if the Web is decomposed into these cohesive collections, for a
wide range of definitions of “cohesive,” the resulting collections are tightly and
robustly connected via a navigational backbone that affords strong connectiv-
ity between the collections. This backbone not only ties together the collections
of pages, but also ties together the many different and overlapping decomposi-
tions into cohesive collections, suggesting that committing to a single taxonomic
breakdown of the Web is neither necessary nor desirable. We now describe these
two findings in more detail.

First, self-similarity in the Web is pervasive and robust—it applies to a num-
ber of essentially independent measurements and regardless of the particular
method used to extract a slice of the Web. Second, we present a graph-theoretic
interpretation of the first set of observations, which leads to a natural hierar-
chical characterization of the structure of the Web interpreted as a graph. In
our characterization, collections of Web pages that share a common attribute
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(for instance, all the pages on a site or all the pages about a particular topic)
are structurally similar to the whole Web. Furthermore, there is a navigational
backbone to the Web that provides tight and robust connections between these
focused collections of pages.

(1) Experimental findings. Our first finding, that self-similarity in the
Web is pervasive and appears in many unrelated contexts, is an experimen-
tal result. We explore a number of graph-theoretic and syntactic parameters.
The set of parameters we consider is the following: indegree and outdegree
distributions; strongly- and weakly-connected component sizes; bowtie struc-
ture and community structure on the Web graph; and population statistics for
trees representing the URL namespace. We define these parameters formally
below. We also consider a number of methods for decomposing the Web into in-
teresting subgraphs. The set of subgraphs we consider is the following: a large
Internet crawl; various subgraphs consisting of about 10% of the sites in the
original crawl; 100 Websites from the crawl, each containing at least 10,000
pages; ten graphs, each consisting of every page containing a set of keywords
(in which the ten keyword sets represent five broad topics and five subtopics of
the broad topics); a set of pages containing geographical references (e.g., phone
numbers, zip codes, city names, etc.) to locations in the western United States;
a graph representing the connectivity of Web sites (rather than Web pages);
and a crawl of the IBM intranet. More details about the crawl can be found in
Section 3.3.

We then consider each of the parameters described above, first for the entire
collection, and then for each decomposition of the Web into subcollections. Self-
similarity is manifest in the resulting measurements in two flavors. First, when
we fix a collection or subcollection and focus on the distribution of any parameter
(such as the number of hyperlinks, number of connected components, etc.), we
observe a Zipfian self-similarity within the pageset.1 Namely, for any parameter
x with distribution X , there is a constant c such that for all t> 0 and a≥ 1,
X (at)=ac X (t). In many cases, even the constant c remains the same across
different subcollection of pages—for example, our study suggests that for any
cohesive collection of Web pages, the fraction of Web pages in this collection that
have k hyper-inlinks is proportional to k−2.1. Second, the phenomena (whether
distributional or structural) that are manifest within a subcollection are also
observed (with essentially the same constants) in the entire collection, and more
generally, in all subcollections at all scales—from local Websites to the Web as
a whole.

(2) Interpretations. Our second finding is an interpretation of the exper-
imental data. As mentioned above, the subcollections we study are created to
be cohesive clusters, rather than simply random sets of Web pages. We re-
fer to them as thematically unified clusters, or simply TUCs. Each TUC has
structure similar to the Web as a whole. In particular, it has a Zipfian dis-
tribution over the parameters we study, strong navigability properties, and

1For more about the connection between Zipfian distributions and self-similarity, see Section 2.2
and [32].
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significant community and bowtie structure (in a sense to be made explicit
below).

Furthermore, we observe unexpectedly that the central regions of differ-
ent TUCs are tightly and robustly connected together. These tight and ro-
bust intercluster linking patterns provide a navigational backbone for the
Web. By analogy, consider the problem of navigating from one physical ad-
dress to another. A user might take a cab to the airport, take a flight to the
appropriate destination city, and take a cab to the destination address. Anal-
ogously, navigation between TUCs is accomplished by traveling to the central
core of a TUC, following the navigational backbone to the central core of the
destination TUC, and finally navigating within the destination TUC to the
correct page. We show that the self-similarity of the Web graph, and its lo-
cal and global structure, are alternate and equivalent ways of viewing this
phenomenon.

1.2 Related Prior Work

Zipf-Pareto-Yule and Power laws. Distributions with an inverse polyno-
mial tail have been observed in a number of contexts. The earliest observations
are due to Pareto [1897] in the context of economic models. Subsequently, these
statistical behaviors have been observed in the context of literary vocabulary
[Yule 1944], sociological models [Zipf 1949], and even oligonucleotide sequences
[Martindale and Konopka 1996], among others. Our focus is on the closely re-
lated power law distributions, defined on the positive integers, with the prob-
ability of the value i being proportional to i−k for a small positive number k.
Perhaps the first rigorous effort to define and analyze a model for power law
distributions is due to Simon [1955].

Recent work [Barabasi and Albert 1999; Broder et al. 2000; Kumar et al.
2001] suggests that both the in- and the outdegrees of nodes on the Web
graph have power laws. The difference in scope in these three experiments
is noteworthy. The first [Kumar et al. 2001] examines a Web crawl from
1997 due to Alexa, Inc., with a total of over 40 million nodes. The sec-
ond [Barabasi and Albert 1999] examines Web pages from the University of
Notre Dame domain *.nd.edu as well as a portion of the Web reachable from
three other URLs. The third [Broder et al. 2000] examines a Web crawl from
1999 due to Altavista, Inc., with a total of over 270 million nodes. This col-
lection of findings already leads us to suspect the fractal-like structure of
the Web.

Graph-theoretic methods. Much recent work has addressed the Web as
a graph and applied algorithmic methods from graph theory in addressing a
slew of search, retrieval, and mining problems on the Web. The efficacy of
these methods was already evident even in early local expansion techniques
[Botafogo and Shneiderman 1991]. Since then, increasingly sophisticated tech-
niques have been used; the incorporation of graph-theoretical methods with
both classical and new methods that examine both context and content, and
richer browsing paradigms have enhanced and validated the study and use
of such methods. Following Botafogo and Shneiderman [1991], the view that
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connected and strongly-connected components represent meaningful entities
has become widely accepted.

Power laws and browsing behavior. The power law phenomenon is not
restricted to the Web graph. For instance, Faloutsos et al. [1999] report very
similar observations about the physical topology of the Internet. Moreover,
the power law characterizes not only the structure and organization of in-
formation and resources on the Web, but also the way people use the Web.
Two lines of work are of particular interest to us here. (1) Web page access
statistics, which can be easily obtained from server logs (but for caching ef-
fects) [Adamic and Huberman 2000; Glassman 1994; Huberman et al. 1998].
(2) User behavior, as measured by the number of times users at a single site
access particular pages also enjoy power laws, as verified by instrumenting
and inspecting logs from Web caches, proxies, and clients [Barford et al. 1999;
http:// linkage.rockfeller.edu/wli /zipf/.].

There is no direct evidence that browsing behavior and linkage statistics
on the Web graph are related in any fundamental way. However, making the
assumption that linkage statistics directly determine the statistics of brows-
ing has several interesting consequences. The Google search algorithm, for in-
stance, is an example of this. Indeed, the view of PageRank put forth in Brin
and Page [1998] is that it puts a probability value on how easy (or difficult)
it is to find particular pages by a browsing-like activity. Moreover, it is gen-
erally true (for instance, in the case of random graphs) that this probability
value is closely related to the indegree of the page. In addition, there is recent
theoretical evidence [Kumar et al. 2000; Simon 1955] suggesting that this rela-
tionship is deeper. In particular, if one assumes that the ease of finding a page is
proportional to its graph-theoretic indegree, and that otherwise the process of
evolution of the Web as a graph is a random one, then power law distributions
are a direct consequence. The resulting models, known as copying models for
generating random graphs seem to correctly predict several other properties of
the Web graph as well.

2. PRELIMINARIES

In this section we formalize our view of the Web as a graph; here we ignore the
text and other content in pages, focusing instead on the links between pages.
In the terminology of graph theory [Harary 1975], we refer to pages as nodes,
and to links as arcs. In this framework, the Web is a large graph containing
over a billion nodes, and a few billion arcs.

2.1 Graphs and Terminology

A directed graph consists of a set of nodes, denoted V and a set of arcs, de-
noted E. Each arc is an ordered pair of nodes (u, v) representing a directed
connection from u to v. The outdegree of a node u is the number of distinct
arcs (u, v1), . . . , (u, vk) (i.e., the number of links from u), and the indegree is
the number of distinct arcs (v1, u), . . . , (vk , u) (i.e., the number of links to u).
A path from node u to node v is a sequence of arcs (u, u1), (u1, u2), . . . , (uk , v).
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One can follow such a sequence of arcs to “walk” through the graph from u to
v. Note that a path from u to v does not imply a path from v to u. The dis-
tance from u to v is one more than the smallest k for which such a path exists.
If no path exists, the distance from u to v is defined to be infinity. If (u, v) is
an arc, then the distance from u to v is 1. Given a graph (V , E) and a sub-
set V ′ of the node set v, the node-induced subgraph (V ′, E ′) of (V , E) is defined
by taking E ′ to be {(u, v)∈ E |u, v∈V ′}, i.e., the node-induced subgraph corre-
sponding to some subset V ′ of the nodes contains only arcs that lie entirely
within V ′.

Given a directed graph, a strongly connected component of this graph is a set
of nodes such that for any pair of nodes u and v in the set there is a path from
u to v. In general, a directed graph may have one or many strong components.
Any graph can be partitioned into a disjoint union of strong components. Given
two strongly connected components, C1 and C2, either there is a path from C1
to C2 or a path from C2 to C1 or neither, but not both. Let us denote the largest
strongly component by SCC. Then, all other components can be classified with
respect to the SCC in terms of whether they can reach, be reached from, or
are independent of, the SCC. Following Broder et al. [2000], we denote these
components IN, OUT, and OTHER respectively. The SCC, flanked by the IN
and OUT, figuratively forms a “bowtie.”

A weakly connected component of a graph is a set of nodes such that for any
pair of nodes u and v in the set, there is a path from u to v if we disregard the
directions of the arcs. Similar to strongly connected components, the graph can
be partitioned into a disjoint union of weakly connected components. We denote
the largest weakly connected component by (WCC).

2.2 Zipf Distributions and Power Laws

The power law distribution with parameter a> 1 is a distribution over the posi-
tive integers. Let X be a power law distributed random variable with parameter
a. Then, the probability that X = i is proportional to i−a. The Zipf distribution
is an interesting variant on the power law. The Zipf distribution is a defined
over any categorical-valued attribute (for instance, words of the English lan-
guage). In the Zipf distribution, the probability of the i-th most likely attribute
value is proportional to i−a. Thus, the main distinction between these is in the
nature of the domain from which the random variable takes its values. A classic
general technique for computing the parameter a characterizing the power law
is due to Hill [1975]. We use Hill’s estimator as the quantitative measure of
self-similarity.

While a variety of socio-economic phenomena have been observed to obey
Zipf ’s law, there is only a handful of stochastic models for these phenomena of
which satisfying Zipf ’s law is a consequence. Simon [1955] was perhaps the first
to propose a class of stochastic processes whose distribution functions follow
the Zipf law (http://linkage.rockfeller.edu/wli/zipf/). Recently, new models have
been proposed for modeling the evolution of the Web graph [Kumar et al. 2000].
These models predict that several interesting parameters of the Web graph
obey the Zipf law.
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3. EXPERIMENTAL SETUP

3.1 Random Subsets and TUCs

Since the average degree of the Web graph is small, one should expect sub-
graphs induced by (even fairly large) random subsets of the nodes to be almost
empty. Consider for instance a random sample of 1 million Web pages (say out
of a possible 1 billion). Consider now an arbitrary arc, say (a, b). The probability
that both endpoints of the arc are chosen in the random sample is about 1 in a
million (1/1000 * 1/1000). Thus, the total expected number of arcs in the induced
subgraph of these million nodes is about 8000, assuming an average degree of
8 for the Web as a whole. Thus, it would be unreasonable to expect random
subgraphs of the Web to contain any graph-theoretic structure. However, if the
subgraphs chosen are not random, the situation could be (and is) different. In
order to highlight this dichotomy, we introduce the notion of a thematically uni-
fied cluster (TUC). A TUC is a cluster of Webpages that share a common trait.
In all instances we consider, these thematically unified clusters share a fairly
syntactic trait. However, we do not wish to restrict our definition only to such
instances. For instance, one could consider linkage-based concepts [Pirolli et al.
1996; Spertus 1997] as well. We now detail several instances of TUCs.

(1) By content. The premise that Web content on any particular topic is
also “local” in a graph-theoretic context has motivated some interesting earlier
work [Kleinberg 2000; Kumar et al. 2001]. Thus, one should expect Web pages
that share subject matter to be more densely linked than random subsets of
the Web. If so, these graphs should display interesting morphological structure.
Moreover, it is reasonable to expect this structure to represent interesting ways
of further segmenting the topic.

The most naive method for judging content correlation is to simply look at
a collection of Webpages that share a small set of common keywords. To this
end, we have generated 10 slices of the Web, denoted henceforth as KEYWORD1,
. . . , KEYWORD10. To determine whether a page belongs to a keyword set, we
simply look for at least one occurrence of the keyword in the body of the docu-
ment after simple preprocessing (removing tags, javascript, transform to lower-
case, etc.). The particular keyword sets we consider are shown in Tables III
and IV. The terms in the first table correspond to mesoscopic subsets and the
corresponding terms in the second table are microscopic subsets of the earlier
ones.

(2) By location. Websites and intranets are logically consistent ways of
partitioning the Web, hence they are obvious candidates for TUCs. We look
at intranets and particular Websites to see what structures are represented
at this level. We are interested in what features, if any, distinguish these two
cases from each other and, indeed, from the Web at large. Our observations
here would help determine what special processing, if any, would be relevant
in the context of an intranet. To this end, we have created TUCs consisting
of 100 Websites (of the form www.*.*) denoted SUBDOMAIN1, . . . , SUBDOMAIN100,
each containing at least 10 K pages and the IBM intranet, denoted INTRANET.
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(3) By geographic location. Geography is becoming increasingly evident
in the Web, with the growth in the number of local and small businesses rep-
resented on the Web (restaurants, shows, housing information, and other local
services), as well as local information Websites such as sidewalk.com. We ex-
pect the recurrence of similar information structures at this level. We hope
to understand more detail about overlaying geospatial information on top of
the Web. We have created a subset of the Web based on geographic cues, de-
noted GEO henceforth. The subset contains pages that have geographical refer-
ences (addresses, telephone numbers, and ZIP codes) to locations in the western
United States. This was constructed through the use of databases for latitude–
longitude information for telephone number area codes, prefixes, and postal
zipcodes. Any page that contained a zipcode or telephone number was included
if the reference was within a region bounded by Denver (Colorado) on the east
and Nilolski (Alaska) on the west, Vancouver (British Columbia) on the north,
and Brownsville (Texas) on the south.

To complete our study, we also define some additional graphs derived from
the Web. Strictly speaking, these are not TUCs. However, they can be derived
from the Web in a fairly straightforward manner. As it turns out, some of our
most interesting observations about the Web relates to the interplay between
structure at the level of the TUCs and structure at the following levels. We
define them now:

(4) Random collections of Websites. We look at all the nodes that belong
in a random collection of Websites. We do this in order to understand the fine-
grained structure of the SCC, which is the navigational backbone of the Web.
Unlike random subgraphs of the Web, random collections of Websites exhibit
interesting behaviors. First, the local arcs within a Website ensure that there
is fairly tight connectivity within each Website. This allows the small number
of additional intersite arcs to be far more useful than would be the case in a
random subgraph. We have generated seven such disjoint subsets. We denote
these STREAM1, . . . , STREAM7.

(5) Hostgraph. The hostgraph contains a single node corresponding to
each Website (for instance www.ibm.com is represented by a single node), and
has an arc between two nodes, whenever there is a page in the first Website
that points to a page in the second. The hostgraph is not a subgraph of the
Web graph, but it can be derived from it in a fairly straightforward manner,
and more importantly, is relevant to understanding the structure of linkage at
levels higher than that of a Web page. In the following discussion, this graph
is denoted HOSTGRAPH.

3.2 Parameters

We study the following parameters:

(1) Indegree distributions. Recall that the indegree of a node is the num-
ber of arcs whose destination is that node. We consider the distribution of in-
degree over all nodes in a particular graph, and consider properties of that
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distribution. A sequence of papers [Adamic and Huberman 1999; Barabasi and
Albert 1999; Broder et al. 2000; Kumar et al. 1999a] has provided convincing
evidence that indegree distributions follow the power law, and that the param-
eter a (called indegree exponent) is reliably around 2.1 (with little variation).
We study the indegree distributions for the TUCs and the random collections.

(2) Outdegree distributions. Outdegree distributions seem to not follow
the power law at small values. However, larger values do seem to follow such
a distribution, resulting in a “drooping head” of the log-log plot, as observed in
earlier work. A good characterization of outdegrees for the Web graph has not
yet been offered, especially one that would satisfactorily explain the drooping
head.

(3) Connected component sizes. (cf., Section 2) We consider the size
of the largest strongly-connected component, the second-largest, third-largest,
and so forth, as a distribution for each graph of interest. We consider similar
statistics for the sizes of weakly-connected components. Specifically, we show
that they obey power laws at all scales, and study the exponents of the power law
(called SCC/WCC exponent). We also report the ratio of the size of the largest
strongly-connected component to the size of the largest weakly-connected com-
ponent. For the significance of these parameters, we refer the reader to Broder
et al. [2000], and note that the location of a Web page in the connected com-
ponent decomposition crucially determines the reachability of this page (often
related to its popularity).

(4) Bipartite cores. Bipartite cores are graph-theoretic signatures of com-
munity structure on the Web. A Ki, j bipartite core is a set of i + j pages such
that each of i pages contains a hyperlink to all of the remaining j pages. We
pick representative values of i and j , and focus on K5,7’s, which are sets of 5
“fan” nodes, each of which points to the same set of 7 “center” nodes. Since com-
puting the exact number of K5,7’s is a complex subgraph enumeration problem
that is intractable using known techniques, we instead estimate the number of
node-disjoint K5,7’s for each graph of interest. To perform this estimation, we
use the techniques of Kumar et al. [1999a, 1999b]. The number of communities
(cores) is an estimate of community structure with the TUC. The K5,7 factor
of a TUC is the ratio of the number of the nodes in the TUC to the number of
nodes that participate in K5,7’s in the TUC. According to this definition, it is
easy to see that the higher the factor, the less one can view the TUC as a single
well-defined community.

(5) URL compressibility and namespace utilization. The URL names-
pace can be viewed as a tree, with the root node represented by the null string.
Each node of the tree corresponds to a URL prefix (say, www.foo.com) with all
URLs that share that prefix, (e.g., www.foo.com/bar and www.foo.com/rab) be-
ing in the subtree rooted at that node. For each subgraph and each value d of
the depth, we study the following distribution: for each s, the number of depth-d
nodes whose subtrees have s nodes. We will see that these follow the power law.
Following conventional source coding theory, it follows that this skew in the
population distributions of the URL namespace can be used to design improved
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Table I. Results for STREAM1 through STREAM7

Nodes Arcs Expansion Indeg. Outdeg. SCC WCC WCC SCC/ IN/ OUT/ K5,7
×106 ×106 factor exp. exp. exp. exp. ×106 WCC WCC WCC factor
6.55 46.8 2.06 −2.07 −2.12 −2.16 −2.32 4.69 0.24 0.23 0.23 47.2
6.47 45.7 2.06 −2.08 −2.24 −2.14 −2.28 4.60 0.23 0.19 0.24 50.1
6.38 48.1 2.05 −2.06 −2.15 −2.15 −2.24 4.47 0.24 0.20 0.23 49.5
6.84 50.0 2.04 −2.12 −2.30 −2.14 −2.27 4.86 0.23 0.21 0.23 43.5
6.83 48.2 2.06 −2.08 −2.27 −2.11 −2.29 4.90 0.24 0.20 0.23 45.4
6.77 49.3 2.01 −2.10 −2.32 −2.11 −2.25 4.78 0.23 0.20 0.24 45.3
6.23 43.5 2.03 −2.13 −2.19 −2.15 −2.27 4.31 0.22 0.19 0.23 46.9

compression algorithms for URLs. The details of this analysis are beyond the
scope of the present article.

3.3 Experimental Infrastructure

We performed these experiments on a small cluster of Linux machines with
about 1TB of disk space. We created a number of data sets from two original
sets of pages. The first set consists of about 500 K pages from the IBM intranet.
We treat this data as a single entity, mainly for purposes of comparison with
the external Web. The second set consists of 60 M pages from the Web at large,
crawled in Oct. 2000. These 60 M pages represent the pages that were actu-
ally crawled and amount to approximately 750 GB of content. The crawl was
seeded with a set of external IBM sites and commercial sites, and the crawling
algorithm obeyed all politeness rules, crawling no site more often than once per
second. Therefore, while we had collected 750 GB of content (crawling about
1.3 M sites) no more than 12 K pages had been crawled from any one site. More
details of the crawling algorithm can be found in Edwards et al. [2001].

4. RESULTS AND INTERPRETATION

Our results are shown in the following tables and figures. Though we have an
enormous amount of data, we try to present as little as possible, while conveying
the main thoughts. All the graphs here refer to node-induced subgraphs, and the
arcs refer to the arcs in the induced subgraph. Our tables show the parameters
in terms of the graphs, while our figures show the consistency of the parameters
across different graphs, indicating a fractal nature.

Table I shows all the parameters for the STREAM1 through STREAM7. The
additional parameter, expansion factor, refers to the fraction of hyperlinks that
point to nodes in the same collection to the total number of hyperlinks. As we
can see, the numbers are quite consistent with earlier work. For instance, the
indegree exponent is −2.1, the SCC exponent is around −2.15, and the WCC
exponent is around−2.3. As we can see, the ratios of IN, OUT, SCC with respect
to WCC are also consistent with earlier work.

Table II shows the results for the three special graphs: INTRANET, HOSTGRAPH,
and GEO. The expansion factor for the INTRANET is 2.158, while the indegree
exponent is very different from that of other graphs. The WCC exponent for
HOSTGRAPH is not meaningful, since there is a single component that is 99.4%
of the entire graph.
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Table II. Results for Graphs: INTRANET, HOSTGRAPH, and GEO

Nodes Arcs Indeg. SCC WCC WCC SCC/ IN/ OUT/ K5,7
Subgraph ×103 ×103 exp. exp. exp. ×103 WCC WCC WCC factor
INTRANET 285.5 1910.7 −2.31 −2.53 −2.83 207.7 0.20 0.48 0.17 56.13

HOSTGRAPH 663.7 1127.9 −2.34 −2.81 659.9 0.82 0.04 0.13 72.64
GEO 410.7 1477.9 −2.51 −2.69 −2.27 2.1 0.87 0.03 0.10 139.9

Table III. Results for Single Keyword Query Graphs KEYWORD1 through
KEYWORD5

Nodes Arcs Indeg. SCC WCC WCC SCC/ K5,7
Subgraph ×103 ×103 exp. exp. exp. ×103 WCC factor
BASEBALL 336.5 3444.4 -2.09 -2.16 -2.30 33.2 0.12 55.85

GOLF 696.8 8512.8 -2.06 -2.06 -2.18 47.3 0.15 44.48
MATH 831.7 3787.8 -2.85 -2.66 -2.73 50.2 0.28 148.7
MP3 497.3 7233.2 -2.20 -2.39 -2.20 47.6 0.28 57.18

RESTAURANT 623.0 3592.5 -2.33 -2.47 -2.28 7.96 0.31 115.2

Table IV. Results for Double Keyword Query Graphs KEYWORD6 through KEYWORD10

Nodes Arcs Indeg. SCC WCC WCC SCC/ K5,7
Subgraph ×103 ×103 exp. exp. exp. ×103 WCC factor

BASEBALL YANKEES 24.0 320.0 −2.11 −2.35 −2.27 3.81 0.73 45.82
GOLF TIGER WOODS 14.9 62.8 −2.07 −2.10 −2.15 1.50 0.20 83.02

MATH GEOMETRY 44.0 86.9 −2.58 −2.65 −2.78 1.90 0.27 407.52
MP3 NAPSTER 27.1 321.4 −2.20 −2.35 −2.20 1.76 0.36 35.19

RESTAURANT SUSHI 7.4 23.7 −2.19 −2.40 −2.20 0.17 0.72 132.14

Table V. Averaged Results for SUBDOMAIN1 through SUBDOMAIN100

Nodes Arcs Indeg. SCC WCC WCC SCC/ K5,7
×103 ×103 exp. exp. exp. ×103 WCC factor
7.17 108.42 −2.11 −2.20 −2.30 7.08 0.42 22.97

Table III shows the results for single keyword queries. The graphs in the cat-
egory are only in few hundreds of thousands. Table IV shows the results for dou-
ble keyword graphs. The graphs in this category are in few tens of thousands.
(Since the graphs in this category are relatively small and more fragmented,
many parameters that were presented for larger graphs do not make statistical
sense, and therefore we drop them from our tables.) Note that the ratio of WCC
to the total number of nodes for these graphs is much smaller than the corre-
sponding value for the other graphs, suggesting that these graphs might have a
different overall connectivity structure. Another specific interesting case is the
large K5,7 factor for the keyword MATH, which probably arises because pages
containing the term MATH is probably not a TUC since it is far too general.

Table V shows the averaged results for the 100 sites SUBDOMAIN1, . . . ,
SUBDOMAIN100.

Next, we point out the consistency of the parameters across various graphs.
For ease of presentation, we picked a small set of TUCs and plotted the dis-
tribution of indegree, outdegree, SCC, WCC on a log-log scale (see the figures
in Section 4.1). Figure 1 shows the indegree and outdegree distributions for
five of the TUCs. As we see, the shape of plots are strikingly alike. As ob-
served in earlier studies, a drooping initial segment is observed in the case of
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Fig. 1. Indegree and outdegree distributions for STREAM1, GOLF, GEO, INTRANET, SUBDOMAIN1. X-axis
denotes the degree d and Y-axis denotes the number of nodes with degree d .

ACM Transactions on Internet Technology, Vol. 2, No. 3, August 2002.



218 • S. Dill et al.

outdegree. Figure 2 shows the component distributions for the graphs. Again,
the similarity of shapes is striking. The URL tree sizes also show remarkable
self-similarity, which exists both across graphs and within each graph across
different depths (see Figure 3).

4.1 Discussion

We now mention four interesting observations based on the experimental re-
sults. Following Broder et al. [2000] (see also Section 2), we say that a slice of
the Web graph has the bowtie structure if the SCC, IN, and OUT, each accounts
for a large constant fraction of the nodes in the slice.

(1) Almost all nodes (82%) of the HOSTGRAPH are contained in a giant SCC
(Table II). This is not surprising, since one would expect most Websites to have
at least one page that belongs to the SCC.

(2) The (microscopic) local graphs of SUBDOMAIN1, . . . , SUBDOMAIN100, look
surprisingly like the Web graph (see Table V). Each has an SCC flanked by IN
and OUT sets that, for the most part, have sizes proportional to their size on
the Web as a whole, about 40% for the SCC, for instance. Large Websites seem
to have a more clearly defined bowtie structure than the smaller, less developed
ones.

(3) Keyword based TUCs corresponding to KEYWORD1, . . . , KEYWORD10 (see
Tables III and IV) seem to have a different overall connectivity structure, since
the WCC is only a small portion of the whole TUC. When restricted to WCC,
however, these TUCs exhibit similar phenomena as other TUCs; the differences
are often due to the extent to which a community has a well-established pres-
ence on the Web. For example, it appears from our results that the GOLF is a
well-established Web community, while RESTAURANT is a newer developing com-
munity on the Web. While the mathematics community had a clearly defined
bowtie structure, the less developed geometry community lacked one.

(4) Considering STREAM1, . . . , STREAM7, we find that (Table I) the union of a
random collection of TUCs contains a large SCC. This shows that the SCC of
the Web is very resilient to node deletion and does not depend on the existence
of large taxonomies (such as yahoo.com) for its connectivity. Indeed, as we re-
marked earlier, each of these streams contain very few arcs that are not entirely
local to the Website. However, the bowtie structure of each Website allows the
few intersite arcs to be far more valuable than one would expect.

4.2 Analysis and Summary

The foregoing observation about the SCC of the streams, while surprising, is
actually a direct consequence of the following theorem about random arcs in
graphs with large strongly-connected components.

THEOREM 1. Consider the union of n/k graphs on k nodes each, where each
graph has a strongly-connected component of size αk. Suppose we add dn arcs
whose heads and tails are uniformly distributed among the n nodes, then,
provided that d is at least of the order 1/(αk), with high probability we will
have a strongly-connected component of size of the order of αn on the n-node
union of the n/k graphs.
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Fig. 2. SCC and WCC distributions for STREAM1, GOLF, GEO, INTRANET, SUBDOMAIN1. X-axis denotes
the size s and Y-axis denotes the number of components with size s.
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Fig. 3. (a) and (b): Self-similarity in URL name trees for STREAM1 and GEO at depths 0, 3, and 6.
(c) Self-similarity in URL name trees between STREAM1, GOLF, GEO, and the INTRANET at depth 3. X-
axis denotes the size s and Y-axis denotes the number of depth d-nodes whose subtrees have s nodes.
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Fig. 4. TUCs connected by the navigational backbone inside the SCC of the Web graph.

The proof of Theorem 1 is fairly straightforward. On the Web, n is about
1 billion, k, the size of each TUC, is about 1 million (in reality, there are more
than 1 K TUCs that overlap, which only makes the connectivity stronger), and
α is about 1/4. Theorem 1 suggests that the addition of a mere few thousand
arcs scattered uniformly throughout the billion nodes will result in very strong
connectivity properties of the Web graph!

Indeed, the evolving copying models for the Web graph proposed in
Kumar et al. [2000] incorporates a uniformly random component together with
a copying stochastic process. Our observation above, in fact, lends consider-
able support to the legitimacy of this model. These observations, together with
Theorem 1, imply a very interesting detailed structure for the SCC of the Web
graph.

The Web comprises several thematically unified clusters (TUCs). The common
theme within a TUC is one of many diverse possibilities. Each TUC has a bowtie
structure that consists of a large strongly-connected component (SCC). The SCCs
corresponding to the TUCs are integrated, via the navigational backbone, into a
global SCC for the entire Web. The extent to which each TUC exhibits the bowtie
structure and the extent to which its SCC is integrated into the Web as a whole
indicate how well-established the corresponding community is.

An illustration of this characterization of the Web is shown in Figure 4.

5. CONCLUSIONS

In this article we have examined the structure of the Web in greater detail
than earlier efforts. The primary contribution is twofold. First, the Web exhibits
self-similarity in several senses, at several scales. The self-similarity is perva-
sive, in that it holds for a number of parameters. It is also robust, in that it holds
irrespective of which particular method is used to carve out small subgraphs of
the Web. Second, these smaller thematically unified subgraphs are organized
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into the Web graph in an interesting manner. In particular, the local strongly-
connected components are integrated into the global SCC. The connectivity of
the global SCC is very resilient to random and large-scale deletion of Websites.
This indicates a great degree of fault tolerance on the Web, in that there are
several alternate paths between nodes in the SCC.

While our understanding of the Web as a graph is greater now than ever be-
fore, there are many holes in our current understanding of the graph-theoretic
structure of the Web. One of the principal holes deals with developing stochastic
models for the evolution of the Web graph (extending Kumar et al. [2000]) that
are rich enough to explain the fractal behavior of the Web in such amazingly
diverse ways and contexts.
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