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ABSTRACT
One feature that seems to have been largely ignored in pre-
vious models of the Web is the inherent hierarchy that is evi-
dent in the structure of URLs. We provide evidence that this
hierarchical structure is closely related to the link structure
of the web, and this relationship explains several important
features of the web, including the locality and bidirectional-
ity of hyperlinks, and the compressibility of the web graph.
We describe how to construct data models of the web that
capture both the hierarchical nature of the web as well as
some crucial features of the link graph. Our analysis is based
on observations from a crawl of over a billion URLs, as well
as large-scale simulations of models. We also show how this
interaction between hierarchical structure and link structure
extends to other domains. In particular we describe some
analysis on corporate instant messaging, in which there is
similar correspondence between the corporate management
structure and patterns of communication between individu-
als.

1. INTRODUCTION
The structure of hyperlinks on the World Wide Web has

proved to be useful for the tasks of clustering, community
extraction [17], classification [3], ranking of pages [24, 15],
and identification of document structure [11]. The Web
link structure therefore represents an intriguing candidate
for study and mathematical modeling.

One feature that seems to have been largely ignored in
studies of the Web is the inherent hierarchy that is evi-
dent in the structure of URLs. For example, in the URL
http://ibm.com/products/server/ we might expect to find
product information about servers, and we might further ex-
pect to find a layer below this containing information about
the individual models. This hierarchical structure of the web
reflects a very common practice for information in general,
namely that it is often organized in a hierarchical tree struc-
ture in a system, with information at the upper levels of the
tree being more general than the information at the bottom
levels1. In the case of paper documents, hierarchical organi-
zation of information dates back centuries, and in the case
of computer file systems, it dates back to the time of Mul-
tics in 1965. The hierarchical structure on the web can be
traced to the fact that most early web servers were built to
retrieve files from their file system, and URLs were mapped
directly to a subtree of their file system. To this day a large

1We follow the peculiar convention of computer scientists
that trees have their leaves at the bottom.

amount of web content still reflects this organization.
In addition to the hierarchical structure of file paths on

a server, URLs also reflect another layer of hierarchy from
the domain name system (DNS), where domains are catego-
rized by their top level domain of edu, org, etc. By reversing
the direction of the hostname in the URL structure, we can
think of the web as being organized as a single tree, with
the top levels of the tree being the top level domains, con-
tinuing down to the individual servers, and down into the
information structure under a hostname. The hierarchical
structure of DNS evolves under different social conventions
from locally managed file systems, and the top levels of the
hierarchy are managed centrally. At lower levels of the DNS,
organization of the hostname to address mapping in DNS
falls under local jurisdiction, and in some cases the local
management of DNS resembles the pattern of organization
found in local file systems. This dividing line where organi-
zation becomes local is the point at which the Web becomes
a distributed information system, and this is the point at
which social processes affect teh structure. Thus while it is
possible to think of the Web as a single tree rooted at the top
of the DNS hierarchy, it is perhaps more natural to model
it as a forest rather than a tree, where the trees represent
individual web sites or sub-domains.

In his seminal work on complex systems, Simon [29] ar-
gued that all systems tend to organize themselves hierarchi-
cally. Moreover, he stated that:

“If we make a chart of social interactions, of who
talks to whom, the clusters of dense interaction
in the chart will identify a rather well-defined
hierarchic structure.”

We believe that a similar phenomenon can be seen in the link
structure of the World Wide Web, in which a large fraction
of the hyperlinks between URLs tend to follow the hierar-
chical organization of information and social groups that
administer the information. In particular, we shall provide
evidence that hyperlinks tend to exhibit a “locality” that is
correlated to the hierarchical structure of URLs, and that
many features of the organization of information in the web
are predictable from knowledge of the hierarchical structure.

Our contributions are in three areas. First, we describe
the results of some statistical analysis carried out on an ex-
tremely large sample from the World Wide Web. We then
point out how previous models of the web fail to adequately
predict some important characteristics of the web, includ-
ing the correlation between hierarchical structure and link
structure, a measure of entropy for links (as evidenced by



compressibility of the web graph), the growth of individual
web sites, and bidirectionality of links on the web. We then
describe a new hierarchical approach to modeling the web
that incorporates these characteristics. Our primary focus
is on describing a class of models and how the observed
structure is reflected in the model, rather than on precise
mathematical analysis of a particular abstract model.

We believe that the hierarchical structure is at least as
important as the hyperlink structure for understanding the
organization of information on the web. Moreover, the inter-
action between the hierarchical structure and the hyperlink
structure reveals even more than the individual structures
by themselves. It is therefore important to understand how
they relate to each other, and may be helpful in understand-
ing the significance of hyperlinks and hierarchies themselves.
In the case of the World Wide Web there is an obvious hi-
erarchical structure, but it is clearly not the only taxonomy
that can be constructed, and we expect that link informa-
tion can also aid in automatic identification of hierarchical
structure as well as improved algorithms for classification of
hypertext [7].

While the motivation for this work arises from the infor-
mation structure of the World Wide Web, we expect this
feature to appear in other information networks for which
there is an obvious hierarchical information organization,
e.g., scientific citations, legal citations, patent citations, etc.
Moreover, we expect that it will also apply to certain types
of social networks, and in Section 9 we consider the specific
case of social networks formed in corporate instant messag-
ing, for which there is a natural hierarchical structure.

The rest of the paper is structured as follows. In the next
section we review some previous work on models of the web
and information systems. In section 3 we describe the data
set and methodology that is used for our observations and
experiments. In Section 4 we describe some previous work
on modeling of random trees and forests, and its relation-
ship to modeling of the web. In section 5 we discuss locality
measures for hyperlinks, and evidence for the fact that this
locality follows the URL hierarchy. In section 6 we examine
the situation in which links are bidirectional. In section 7
we outline our requirements for a model of the Web, and
describe our hierarchical paradigm for modeling of the web.
In Section 8 we describe a measure of entropy for links un-
der different models, and compare our model to others. In
Section 9 we describe some analysis on corporate instant
messaging logs and how the same phenomenon between hi-
erarchy and links occurs in other realms. We conclude in
Section 10 with a summary and some opportunities for fu-
ture work.

2. PREVIOUS MODELS OF THE WEB
In recent years there has been an explosion of published

literature on the subject of models for networked systems,
including the World Wide Web, social networks, technolog-
ical networks, and biological networks. For coverage of this
we refer the reader to the survey by Newman [23]. Much of
this work is in the spirit of Simon’s work on complex sys-
tems; attempting to explain various features such as degree
distribution that are ubiquitous across very different kinds
of systems. Examples include:
Small world structure Most pairs of nodes are connected

by relatively short paths.

Degree distributions In-degrees and out-degrees of nodes
often appear to have a heavy-tailed distribution,

Transitivity the neighbors of a node are often neighbors
of each other, producing graphs that have a relatively
large number of “triangles”.

Community The graph contains subsets with relatively
high density of edges between nodes in the subset, but
relatively low density of edges between nodes in differ-
ent subsets.

Beyond these generic characteristics that show up across
many different classes of networks, there are other features
that may be unique to a particular type of network such as
the World Wide Web. Some of these are due to the directed
nature of the Web, but others are specific to the structure
of information that the Web represents. A complete survey
of previous evolutionary models for the World Wide Web
is beyond the scope of this paper, and once again we refer
the reader to the survey by Newman [23] to summarize the
developments up until 2003.

Models of the web are generally defined as stochastic pro-
cesses in which edges and nodes are added to the graph
over time in order to simulate the evolution of the web (or
any other network). Such models fall broadly into two cat-
egories. The first category is those that rely upon Price’s
concept of cumulative advantage, also sometimes referred to
as preferential attachment or “the rich get richer”. In this
model, the probability of adding an edge with a given desti-
nation and/or source is dependent on the existing in or out
degree of the node (usually in a linear fashion). The linear
dependence on the existing degree can be varied to incor-
porate a mixture of two processes, in which cumulative ad-
vantage is mixed with some fraction of uniform assignments
of edges [25]. The second class of models uses a notion of
evolving copying, in which the destinations for edges from a
node are copied as a set from an existing node chosen under
some distribution [16].

In section 7 we will present a new paradigm for construct-
ing models of information networks that incorporates their
hierarchical structure. It is our hope that by breaking the
web down into the component features of site size, hierar-
chical structure of information, and link structure, we will
present a useful paradigm for future analysis that incorpo-
rates multiple features of the web. It should be noted that
the hierarchical evolution of structure can be combined with
previous techniques of cumulative advantage or copying.

A hierarchical model of the web was previously suggested
by Laura et. al. [18]. In their model, every page that enters
the graph is assigned with a constant number of abstract
“regions” it belongs to, and is allowed to link only to vertices
in the same region. This forces a degree of locality among
the vertices of the graph, though the definition of regions is
unspecified, and the model artificially controls connections
between these regions. In our model, we use the explicit
hierarchy implied in the structure of URLs to establish the
regions, which reflects a social division by organization.

Another recent model that incorporates hierarchical struc-
ture was proposed in [28]. Their model is generated in a very
regular fashion, by starting with a small graph of five nodes,
and replicating it five times, and joining these replicas to-
gether, and recursing this procedure. The resulting graph
is shown to exhibit a clustering coefficient that resembles
many real networks. Another recent model that results in



a hierarchical organization of nodes was proposed in [6]. In
both cases the models are fairly simple, and are designed to
produce some specific generic properties such as clustering
coefficient and degree distributions.

3. EXPERIMENTAL METHODOLOGY
Our observations are based on examination of a large sub-

set of the Web that has been gathered at IBM Almaden since
2002. At the time of our experiments, the crawl had discov-
ered at least 5.6 billion URLs on over 48 million hosts. For
our analysis of tree structure we used the complete set of
URLs, and for our analysis of link structure we used the
first billion crawled URLs. For some of our experiments, we
sampled from among the crawled URLs in smaller propor-
tion in order to keep the computations manageable. Our
goal was to use as large a data set as possible in order to
provide assurance that our observations are fairly compre-
hensive. Even with such a large data set, observations about
the World Wide Web are complicated by the fact that the
data set is constantly changing, and it is impossible to gather
the entire web. The characteristics of the data set are also
influenced by the crawl strategy used. The algorithm used
by our crawler is fairly standard, by keeping a set of hosts
active at one time, and crawling in round robin fashion from
this set of hosts. After a time, these sites are evicted, to be
replaced by other sites. The crawl order is well approxi-
mated by a breadth first search.

More than 40% of the URLs discovered in our crawl con-
tain a ? character in them, which proves to be a crucial
consideration in our study. Such URLs are often used to
fetch the results of a database query, with arguments fol-
lowing the ? to indicate the data that is requested. Unfor-
tunately, an increasing number of web sites use such URLs
to retrieve standard textual content, encode session IDs, or
indicate viewer preferences, and it is extremely difficult to
distinguish these cases. Moreover, even if the URL lacks a
? character, the content may still come from a relational
database query that is encoded using a different convention.
Because the purpose of this study is to investigate the re-
lationship between hyperlinks and hierarchical organization
of knowledge, we excluded URLs containing a ? from our
study altogether. As the web continues to grow, we expect
this feature to become increasingly important.

We found that a significant fraction of the sites and pages
from the crawl were pornographic in nature. The structure
of these sites and the links between them is driven by a dif-
ferent social process from the rest of the web. In particular
they are aggressive in their attempt to enhance their search
engine rankings, and search engines are aggressive in their
efforts to remove them. For these reasons, we used a simple
classification scheme to remove these from our experimental
set. We also chose to exclude URLs from our link analysis
if they do not represent hypertext content (e.g., postscript,
images, and other data types), as they represent leaf nodes
without outlinks.

4. THE WEB FOREST
At a coarse level of granularity, we can think of the web

as a collection of hosts that grow more or less independently
of each other. The distribution of the number of URLs per
host is shown in Figure 1. The number of URLs per host
was previously studied by Adamic and Huberman [14], who

hypothesized that the growth of an individual web site is
modeled as a multiplicative process, resulting in a lognormal
distribution. This provides a model of the web as a mixture
multiplicative processes, leading to a power law tail for the
distribution. Indeed, our data in Figure 1 seems to exhibit
a power law distribution in the tail (though there is some
variation with a hump in the middle).

The use of multiplicative models for web site growth can
be formulated as follows. Let S(t) denote the size of a web
site at time t, and let us hypothesize that S(t) = g(t)S(t−1)
for t ≥ 1. In this case we have that

log(S(t)) = log(S(0)) +

t−1X
i=1

log(g(i)).

If the g(i) are i.i.d., with finite mean and variance, then the
central limit theorem suggests that log(S(t)) would have an
asymptotically normal distribution, which means that S(t)
would have a lognormal distribution. This is the model was
suggested in [14], but there are several subtleties that un-
derly this model (see [21]). For one thing, the values of
S(t) must be integers, which places somewhat unreasonable
restrictions on the choice of g(t). An alternative multiplica-
tive model has been suggested by Reed (see also [21]), giv-
ing rise to a double Pareto distribution that combines two
Pareto distributions at an inflection point. In either case
the tail of the distribution ends up being a power law, and
the only question is how to model the data at the head of
the distribution.

Note however that statistics on web site size distribution
are strongly affected by crawl strategy, and in particular
many of the hosts that appear to have few pages are either
protected from crawling by the existence of a robots.txt

file, or else they are merely a redirect to another site with a
different name. Moreover, resource restrictions dictate that
our crawl truncates extremely large sites. These issues are of
little concern to us because we only seek to model informa-
tion networks as they appear to data mining applications.

One appealing aspect of the multiplicative model is that
S(t) is allowed to shrink, which is potentially important
since web pages seem to disappear at a rapid rate. There
are variations using this approach that can be proposed here,
but the dynamics of the web seem to involve a number of
complicated factors. For example, recent attempts to ma-
nipulate search engine rankings have led to a proliferation of
many small cooperative sites that aggregate links to a single
site in order to boost its rating, and these tend to distort
observations of the size of sites.

Another complication of modeling the size of web sites
arises from the growing presence of databases exposed through
an HTTP interface. For example, if a relational database ta-
ble is exposed through HTML content containing dynamic
links to facilitate exploration of the table, then it may result
in a number of URLs that is exponential in the number of
rows and columns of the database table (reflecting the num-
ber of possible queries on the table). For sites constructed
this way the rate of growth will be very bursty, and their web
pages would tend to have a very regular pattern of links, and
therefore would not be well modeled by the work described
here. Since we are interested in hierarchical organization of
information rather than relational organization of data, we
have specifically excluded URLs from our study if they con-
tain a ? character. This minimizes the effect of relational



data exposed through HTTP, but there remain many issues
to be worked out in modeling the size of web sites accurately.

4.1 Tree shapes
Also shown in Figure 1 is the distribution of the number

of directories per site. Based on observations from 60 mil-
lion URLs on 1.3 million sites, it was previously observed
in [10] that the size of directory subtrees at a given depth
appears to follow a power law, which is consistent with our
observations on a much larger data set. Note that in con-
trast with the distribution of URLs per site, the number of
directories per site seems to behave more like a pure power
law. We will return to this point in section 4.2.

Moving down the hierarchy, to the directory structure
within hosts, one might wonder how the shapes of direc-
tory trees of web servers are distributed, and how the URLs
on a web server are distributed among the directories. For
this purpose, we sorted the static URLs in our set of 5.6
billion URLs by directory order. Then for each directory
we computed the number of URLs that correspond to the
files in that directory, the number of subdirectories, and
the depth of the directory. The distribution of the number
of URLs and the number of subdirectories (the fanout) is
shown in Figure 2. Once again, the shapes of the distribu-
tions suggest that both of these are distributed as a power
law distribution. Using the technique describe in [8], we es-
timate that the probability of finding more than n URLs
in a subdirectory is approximately c/n1.20 for large n, and
the probability of finding more than d subdirectories of a
directory is approximately c/d1.43.
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Figure 1: Number of pages and directories per host.

One might wonder whether the process of creating directo-
ries and creating URLs within the directory are correlated to
each other, either positively or negatively, i.e., whether the
existence of many URLs in a non-leaf directory is correlated
to whether the directory has many (or few) subdirectories.
In order to test this hypothesis, we computed a Goodman-
Kruskal Gamma statistic [13] on fanouts and URL counts for
a sample of non-leaf directories from our data set. Our com-
putations suggest that they are only slightly concordant, so
it is probably safe to model them as independent processes.

4.2 Growth of Trees
In order to understand the distribution of links in the hier-

archy, we first need to understand the structure of directory
trees for web sites. At least two models for the shape of ran-
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Figure 2: Number of subdirectories of a directory
and number of URLs within individual directories.
Note that some internal node directories have no
URLs in them.

dom trees have been studied extensively, namely the class of
random recursive trees and the class of plane-oriented ran-
dom recursive trees (see [30]). Random recursive trees are
built up by selecting a node uniformly at random and attach-
ing a new child to it. This class of trees results in a fanout
distribution where Pr(degree = k) ∼ 2−k, and are thus un-
suitable for describing the type of trees seen here. By con-
trast, the construction of plane oriented trees chooses a node
with probability proportional to 1+degree, resulting in a
fanout distribution where Pr(degree = k) ≈ 4

(k+1)(k+2)(k+3)
,

or ≈ 4/k3 for large k. This therefore gives a power law for
the fanout distribution, but with the wrong exponent. It is
however a simple matter to modify the plane-oriented model
to incorporate a mixture between cumulative advantage and
uniform attachment in order to achieve a more realistic de-
gree distribution for trees.

The web does not grow as a single tree however; it grows
as a forest of more or less independent trees. Rather little
has been written about models for random forests, but one
model was studied in [4]. In their model, forests with node
set {1, . . . , n} are grown as follows. Designate 1 as a root,
and in order to determine the vertex k for k = 2, 3, . . . , n,
we select y from {0, 1, . . . , k − 1} with probability pk(y). If
y ∈ {1, . . . , n} then we join k to y, and if y = 0 then we
designate k as a new root. Most of their results are however
concerned with the special case of pk(y) = 1/k, in analogy
to the uniform random recursive tree model. Among other
things, they proved that in this model the number of trees in
a forest of size n nodes is asymptotically log n. In our data
set from the web, we found approximately 48 million trees
(websites) in a forest of 417 million nodes (directories). For
this reason alone, the model of [4] does not seem appropriate
as a model of the web forest, as it would have predicted a
much smaller number of websites.

Random recursive forests were also considered by Mitzen-
macher [22], where his goal was to construct a model of file
sizes in a file system. In his model, files are either created
from scratch according to a fixed distribution, or else they
are created by copying an existing file and modifying it. The
trees are then used to model the evolution of files, and he
used a constant probability of creating a new root at each
step, resulting in many more trees in the forest than the uni-



form recursive model of [4]. We adopt a similar strategy in
our model of web forest growth, by maintaining a constant
probability of creating a new web site at each time step. It
may be the case that this probability will vary over time,
but we leave this to future studies of web evolution.

Another potential problem is related to the fact that web
sites tend to grow largely independent of each other, whereas
in [4] the placement of new leaves in the forest is dependent
on the structure of the entire existing forest. In reality, the
particular size of one web site usually has no bearing on the
size of another web site (excluding mirrors and hosts within
a single domain). For this reason we believe it is natural to
model the growth of the forest as a collection of independent
trees.

There are a number of interesting statistics that might be
investigated concerning the growth of the web forest. One
difference between the two classes of random trees is found
in the number of leaves. For random recursive trees the
expected number of leaves is asymptotically 1/2 the number
of nodes, whereas for plane-oriented random recursive trees
the expected number of leaves is asymptotically 2/3 of the
number of nodes. In the case of our web sample, we found
that for hosts with more than 10 directories, the average
number of leaves was 60%, and across the entire web the
number of leaves is 74%. Hence the presence of many small
sites on the web with few directories contributes many of
the leaves. Note also that the 60% figure agrees with our
suggestion to interpolate between plane-oriented trees and
uniform recursive trees.

5. LINK LOCALITY
It has been observed in various contexts that links on the

web seem to exhibit various forms of “locality”. We loosely
use the term locality to mean that links tend to be correlated
to pages that are “nearby” in some measure. The locality
of links in the web is important for various applications,
including the extraction of knowledge on unified topics and
the construction of efficient data structures to represent the
links. We shall consider the latter issue in Section 8.

In practice there are various measures of locality that one
might consider. Watts and Strogatz defined the concept
of a clustering coefficient, and similar measures have been
studied by others (see [23, § IIIB]). The clustering coefficient
is a local measure of how often a page will link to two pages
that link to each other, although it is usually studied in the
context of undirected graphs. Experiments by Adamic [1]
on a set of 100 million Web pages in 1998 showed that the
clustering coefficient for the Web is relatively large, and this
provides at least one form of evidence for locality in links.

These measures provide evidence of a form of locality in
the Web, but they do not shed much light on the process that
creates the locality, and are therefore difficult to explain
directly by a model. Davison [9] and Menczer [20] have
studied a more natural measure of locality in the form of
“topical locality”, based on the observation that pages linked
to or from a given page are usually on a similar topic. A
similar point of view can be found in work toward identifying
community structure in the web [16].

5.1 Locality and Hierarchy
None of these measures take into account the purposes for

which links are created. We believe that much of the local-

ity of links can be explained by a very strong correlation
between the process of creating links and that of growing
the hierarchy of a web site. Specifically, links can be of two
types: navigational links within a cohesive set of documents,
and informational links that extend outside the corpus de-
veloped by the author. Navigational links can further be
broken down into templatized links designed to give web
pages a common look and feel, and informational links that
facilitate exploration of a body of knowledge.

We can categorize links to be one of several types based on
the relative placement of the source and destination within
the hierarchies, and divide them into six distinct types: Self
loops, Intra-directory links, Up and Down links (those that
follow the directory hierarchy), Across links (all links within
a host that are not of the other types), and External links
that go outside of the site. The second column of Table 1
shows the distribution of links into the various types, based
on a sample of links from our entire corpus. This data clearly
shows that external links are relatively rare, particularly
when considering the fact that picking end points for links
randomly by almost any strategy would result with almost
all links being external. Note that when we limit ourselves
to links for which we have crawled both ends, the fraction
of external links is even smaller. This is partly because
“broken” links are more common among external links, and
partly because of our crawling strategy.

The discrepancy between the number of down and up links
is perhaps surprising at first, but reflects several factors.
First, many sites have every page equipped with a link to
the top of the site (i.e., the starting point of the site), but
downward links often target a single “entry page” in a di-
rectory [11]. Second, resource limitations on crawling and
author-imposed restrictions on crawling via a robots.txt

file will result in some down links being discovered without
crawling the lower level pages to discover up links.

Another point one may consider when examining the dis-
tribution of links of the various types is the influence of nor-
malizing the distribution by the number of possible targets
of the various types. For example, in a random sample of ap-
proximately 100,000 web sites, we found that approximately
92% of the URLs appear at the leaves of the directory tree.
Clearly, leaves cannot have outgoing “down” links.

How much does the tree structure dictate the distribu-
tion we see? To answer this question we picked a random
sample of roughly 100,000 sites, and for each page, gener-
ated outlinks to other pages from the same site uniformly
at random. We generated the same number of outlinks as
the pages originally had. We compare this to the distribu-
tion of types of outlinks in general, normalized to exclude
self-loops and external links, in Table 2. The data clearly
shows a significantly higher number of links that follow the
hierarchy (intra-directory, up and down links) in the real
data, compared to what a random selection of targets will
generate. This shows that the creation of links is highly
correlated with the hierarchical structure of a web site.

Another measure of locality that bears some relationship
to the hierarchical structure is the measure of directory
distance. We consider a distance measure between URLs
known as the “tree distance”. This distance is calculated
by considering the directory structure implicitly exposed in
a URL as a tree, and measuring the tree traversal distance
between the directories (e.g., the number of directories be-
tween slashes that must be removed and appended to get



Type of link Static links Both ends crawled Bidirectional
Intra-directory 32.3% 41.1% 80.3%

Up 9.0% 11.2% 4.5%
Down 5.7% 3.9% 4.5%

Across directories 18.4% 18.7% 10.0%
External to host 33.6% 25.0% 0.7%

Total 5.1 billion 534893 156859

Table 1: Distribution by type for a sample of links. Shown are a sample of links where both source and
destination are static URLs, and the subset where both ends were crawled. In the final column we tabulate
the number of bidirectional links. Self loops (which were not included in the sample) account for roughly
0.9% of the links.

Type of link Crawled links Random links
Internal 48.6% 32%

Up 13.6% 6%
Down 8.6% 5%
Across 22.7% 57%

Table 2: Distribution of intra-host links in our test
corpus and in a randomly generated graph on a sam-
ple of sites. Random assignment produces a dis-
tinctly different distribution of link types.

from one URL to the other). For external links we add 1 for
a change of hostname.

We hypothesized that links tend to span a short distance
in this measure, and in order to test this we calculated the
distances for a sample of links for which both the source
and destination URL do not contain a ? character. Fig-
ure 3 shows the results of the distribution of tree distance
from this data set. From this data it appears that links have
a great deal of locality when distinguished by the tree dis-
tance. In each case it appears that the probability of a link
covering a distance d appears to decrease exponentially in
d, in spite of the fact that the number of eligible targets for
a link initially increases with the distance.
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Figure 3: Distribution of tree distance for hyper-
links. As distance increases, the probability of a
hyperlink decreases.

6. HYPERLINK BIDIRECTIONALITY
In order for two web pages to share links to each other, the

authors must at least know of their existence. Thus if the

pages are created at different times, the page created first
must either be created with a “broken” link, or else it is
later modified to include a link to the page created later. In
the case when pages are created by different authors, either
they must cooperate to create their shared links, or else one
page must be modified after creation of the other. This may
explain why many bidirectional links appear between pages
that are authored by the same person at the same time.

For these experiments, we used roughly the first 600 mil-
lion pages from the crawl. In order to examine the existence
of bidirectional links in our corpus, we randomly sampled
1/64th of the URLs, recording the links between pairs of
pages that had been crawled, and noting when there were
links going in each direction between the pair of pages. The
results, broken down by link type, are shown in Table 1.
From this data we can draw several conclusions. First, bidi-
rectional links are far more frequent than previous models
would have predicted. Second, it is evident that the vast
majority of bidirectional links occur in the same directory,
and probably arise from simultaneous creation by the same
author. Bidirectional links between pages on dissimilar sites
are extremely rare and probably indicates a high degree of
cooperation or at least recognition between the authors of
the two pages.

7. HIERARCHY IN MODELS FOR THE WEB
We believe that the approach to modeling the web should

incorporate the social process of authorship, and the na-
ture of social relationships within increasingly larger groups.
Consider the social process by which a web site of a large
company or university is built. At the lowest level we start
with an individual who authors a few pages such as a per-
sonal page or a news release. The author of these pages
may be a member of a small group, department, or family, in
which there are other authors who contribute material. Con-
tinuing up the chain, a department or group might be part
of a division, college, or physical location within a larger or-
ganization consisting of a university, company, or ISP. This
larger organization can be grouped with other organizations
of the same type, such as other universities under the edu
domain, or other companies, or other domains in the same
geographic region. As we move up the hierarchy of social
structure, there is generally less social coordination between
authors of pages.

The hierarchical structure of the social groups of authors
of web information follows very closely the development of
other social phenomenon as described by Simon [29]. In
addition to this social hierarchy, web information often has a
topical hierarchy associated with it that is often recognizable



from the URL hierarchy. For example, and individual author
will typically organize their files into directories, grouping
them by topic. Users are often given access to a directory on
a server, using file permissions to grant access to everything
under that node of the tree. This combination of social
hierarchy and filesystem hierarchy encapsulates a great deal
of structure that we shall incorporate into our model of the
World Wide Web.

7.1 Requirements for a Model
Efforts to model complex systems usually have to make

tradeoffs between accuracy and simplicity. Simple models
generally lend themselves to direct mathematical analysis
and extrapolation, but they often fail to adequately describe
the many features that are present in a complex system.
Complex models tend to defy direct analysis, but are better
able to describe the system. For complex models, simulation
is a viable alternative to direct analysis.

In seeking to model the Web, we consider the following
axioms to be important, though the list is not exhaustive.
First, it should be evolutionary, ideally including both birth
and death processes. Next, the model should reflect the so-
cial and authorship processes that influence the World Wide
Web. Third, the tail of the indegree distributions should
exhibit a power-law. Outdegree distributions should also
display a power-law tail, though they arise from a different
process. Fourth, the model should reflect any inherent hier-
archical organization of the system. Fifth, the model should
exhibit a degree of locality in the link structure. Other desir-
able features include the existence of small communities of
thematically related pages [16], and the probability of a link
being bidirectional being strongly correlated to the locality
of links.

7.2 A Hierarchical Model of the Web
We propose a model in which the web grows in two differ-

ent (but related) ways. First, new hostnames get added to
the web, and second, new URLs get added to existing hosts.
We treat these processes separately, by evolving two graph
structures for the forest directory structure and the hyper-
links. Sites themselves grow in a hierarchical fashion, with a
site starting as a single URL, and growing into a tree. There
are many variations on the procedure that we describe, and
we defer discussion of these until after we describe the basic
model.

We first describe how the forest structure is built. At each
step in time a new URL is added to the Web. With proba-
bility ε, this URL is added as a new tree (i.e., a new site),
containing a single URL. With probability η we create a
new directory on an existing site to put the URL into. With
probability γ we pick an existing leaf directory (a directory
that has no sub-directories) and add the new URL to it.
Finally, with probability 1 − γ − ε − η, we pick an existing
non-leaf directory and add the new URL to it. In the case
where a new directory is to be created, we pick the parent
directory uniformly at random with probability cf , and with
probability 1−cf , in proportion to the current fanout of the
directory. When adding a URL to an existing directory, we
pick a directory uniformly at random with probability cs,
and with probability 1 − cs with proportion to the number
of URLs in the directory.

We now describe how the links are created. At the time
that we create a URL, we create a single inlink to the newly

created page (this makes the resulting graph connected). If
the URL is created on a new site, the source for the inlink
is chosen uniformly at random from all URLs in the graph.
If it is created in an existing site, we pick a URL uniformly
at random from the set of URLs in the directory where the
new URL is attached and the directory immediately above
it.

We now have to say how to create links from each newly
created URL. We hypothesize the existence of five param-
eters that are preserved as the graph grows, namely the
probabilities of a link being internal, up, down, across, or
external. For each type of link t we have a fixed probability
pt that remains constant as the graph grows, and

P
t pt = 1.

For each type of link we also have a fixed probability bt

that the link will be bidirectional. In assigning links from a
page, we first decide the number of links in accordance with
a hypothesized distribution on the outdegrees from pages.
We expect that this distribution has a power law tail, but
the small values are unimodal and dictated by the common
conventions on page design (in our simulation we use the
observed outdegree distribution averaged over all sites). For
each created link we assign it a type t with probability pt.
We pick the target for the link from among the eligible URLs
with a mix of uniform and preferential attachment, namely
with probably δ we choose one uniformly at random, and
with probably 1 − δ we pick one with probability that is
proportional to its existing indegree. If there are no eligible
URLs to create a link to, then we simply omit the link (for
example, in the case of attempting to create a down link
from a URL at a leaf directory). If we create a link, then
we create a backlink from that link with probability bt.

The mix of uniform and preferential attachment for in-
links is designed to guarantee the power law distribution for
indegree. There are endless variations on this model, includ-
ing the incorporation of copying, a preference for linking to
URLs that are a short distance away, preferences for linking
to URLs that are at a given level of the directory tree, etc.
The purpose of our exposition here is to propose a simple
model that satisfies the hierarchical requirement mentioned
previously.

8. LINK COMPRESSION AND ENTROPY
It has been observed by several authors that the link graph

is highly compressible [5, 27, 26]. Randall et al. [27] report
that it takes only 6 bits on average to store the outlinks
from a set of 350 million pages (6 billion links), and more
recently Boldi and Vigna [5] have found encodings that use
only 3 bits per link. If the links were random then of course
this would not be possible, as an easy probabilistic argument
says that at least 28 bits would be required to store a single
link from each page, and this number would grow as log(N)
for a graph with N nodes. One possible source of redun-
dancy in the link structure may be attributed to the power
law distribution of indegrees. However, it was observed by
Adler and Mitzenmacher [2] that a simple Huffman encoding
scheme that exploits only this redundancy for compression
of the web graph would still require Ω(log(N)) bits to rep-
resent an edge in an N -node link graph. This suggests that
there are other sources of redundancy in the link graph that
allow for such high levels of compression.

In fact, the hierarchical locality for links that we have
observed is closely related to why such good compression



schemes for the web graph are achievable. The primary
method used in [27] is to sort the URLs lexicographically,
and encode a link from one URL to another by the difference
between their positions in the list. This delta encoding is
small precisely because the URLs of source and destination
often agree on a long prefix of the strings, and are therefore
close together in a lexicographic sort order. Since lexico-
graphic order of URLs is a good approximation of directory
order, the compressibility of the link graph is closely related
to the locality of links in the hierarchical structure. This
observation that locality is the source of compressibility of
the web graph was also made in [2].

To further explore the link between hierarchical structure
and compression, we wish to examine how well various web
models explain link compressibility. Rather than consid-
ering the various compression schemes devised (which are
mostly based on the textual structure of the URLs, and are
designed to facilitate efficient implementation), we concen-
trate on the information-theoretical measure of the entropy
of the link graph. We choose to focus on the following en-
tropy measure, which we call isolated destination entropy.
We define the probability distribution whose entropy we
measure as follows: First, the evolutionary model is used
to grow a graph to a given number of nodes N . Then, we
consider the distribution of the destination URLs that are
linked to from each URL (where the distribution is over the
set of all nodes in the graph). In other words, for each source
URL v, we consider the distribution of the random variable
Dv whose values are the destinations of links originating at
v.

Our motivation in picking the entropy measurement to be
based on a static snapshot of the graph, rather than con-
sidering the entropy of the selection process employed by
the various evolutionary model, is to mimic the conditions
faced by a compression algorithm for a web. When com-
pressing the web, a compression algorithm typically has no
knowledge of the order in which URLs and links were cre-
ated. Furthermore, we would like a measure of compressibil-
ity that is independent of the evolutionary model used, to
allow for an apples-to-apples comparison of the various mod-
els. The isolated destination entropy is a lower bound on the
compression that may be achieved by compression schemes
that encode each destination independently of other desti-
nations. It obviously also dictates a lower bound for more
sophisticated methods.

This measure captures the redundancy in information that
is present because outlinks from a given page are typically
made to pages in the close proximity to the source page.
However, this does not capture the more global phenomenon
that makes pages that are close to each other in the hi-
erarchy have links similar to each other. In fact, it does
not even directly exploit the dependency between different
pages linked to from the same page. The effects of this phe-
nomenon are part of the explanation for the improvements
over the Link2 scheme in [27] achieved by schemes, such as
the Link3 scheme in [27], that use delta encodings between
outlink lists of multiple pages.

Unfortunately, because of the complexity of the models
and the fact that we are measuring entropy on snapshots
of the graph, we are unable to analytically compute the
isolated destination entropy. Instead, we provide empirical
measurements for various models. To measure the isolated
destination entropy we use each model to generate 225 ran-

dom graphs, each containing a million nodes. Where appli-
cable, we use the same arbitrary set of URLs (and hierarchi-
cal structure) for all graphs generated by a model, and only
allow the link generation process to be driven by a pseudo-
random number generator. We then sample a fraction of
the nodes in all the graphs, and empirically estimate their
average isolated destination entropy by calculating the en-
tropy of the empirical distribution of outlinks from a node.
We express our entropy measurement in bits per link, as is
customary in works that describe compression schemes for
the web graph [27, 2]. When comparing these results to the
theoretical maximum entropy, one must note that because
of the relatively small sample that we use relative to the
domain of the random variable Dv, the upper bound on the
entropy is much lower than the usual log N for a graph with
N nodes. Instead, if the average outdegree is d, and we gen-
erate m distinct graph, log(md) is an upper bound on the
empirical isolated destination entropy we can expect. This is
because, on average, only md outlinks from any given node
will be encountered in the sample.

The models we compare are the following:

PAModel A preferential attachment model based on [19,
25]. In this model, the destination for outlinks is cho-
sen by a mixture of preferential attachment and a uni-
form distribution over all previously cerated URLs.

AMModel A copying model, similar to that of Kumar et
al. [17]. Following Adler and Mitzenmacher’s choice of
parameters for this model labeled G4 [2], we set the
parameters for this model to copy links from zero to
four previous nodes, where each link is copied with
probability 0.5, and either one or two additional links
are then added with the destination chosen uniformly
at random.

Hierarchical Model Our hierarchical web model as de-
scribed in Section 7.2.

Model Empirical Entropy Max. Entropy

PAModel 11.72 12.56
AMModel 9.6 12.05
Hierarchical 8.08 12.49

Table 3: Empirical measurements of isolated desti-
nation entropy on graphs generated by three mod-
els. Measurements are based on sampling from 225
graphs for each model, of size one million nodes
each.

Both PAModel and the hierarchical model require outde-
grees to be drawn from a power law distribution. Rather
than using a pure power law distribution, we use a sample
of outdegrees from our web crawl to determine the “head”
of the outdegree distribution in these models, with the tail
being determined by a power law. This distribution has a
mean of about 27 outlinks. The Hierarchical model exhibits
a slightly lower average outdegree in practice, because some
outlinks may not be feasible (e.g., uplinks from top level
URLs, etc.). The results of our experiments are summa-
rized in Table 3. The results clearly point out that the
destinations for outlinks in our hierarchical web model are



far less random than those generated by the previous mod-
els we compare against. The results also demonstrate that
graphs generated by an evolutionary copying model tend to
have a less random structure than graphs where link destina-
tions are chosen through a preferential attachment process.
This suggests that incorporating copying into the hierarchi-
cal model may reduce the uncertainty in link creation even
further, and yield an even more realistic model, as far as the
measure of compressibility of the link graph is concerned.

9. CORPORATE INSTANT MESSAGING
In this section we describe a totally different example

of the relationship between hierarchical structure and link
structure. We note that corporations tend to be organized
hierarchically, and we might therefore suspect that Simon’s
hypothesis on communication following a hierarchy to be ex-
hibited within a corporation. In this section we examine the
communication patterns exhibited in text instant messaging
within a corporation.

Text instant messaging has gained wide acceptance inside
IBM for global communication among the approximately
325,000 employees around the world. By arrangement with
the corporate IT department, we were able to obtain2 a
log of the email addresses for 175,288 individual sessions
(involving 75,587 different individuals). For each session we
used the online database of the management structure to
retrieve the management chain of the two people involved
in the session. Simon’s hypothesis suggests that most of the
conversation will take place between people that are close
to each other in the management hierarchy.

One fact that may seem surprising is that the IBM man-
agement structure is a forest and not a tree. In particu-
lar, the general managers of the divisions in all the differ-
ent countries do not report directly to the CEO. Thus the
management structure resembles the hierarchical structure
of the web in the sense that it can be traced to a few top
level nodes.

Table 4 shows the breakdown of sessions according to the
relationship between the two parties in the management
chain. The most striking thing about this breakdown is
the fact that they bear some resemblance to the statistics
of hyperlinks given in Table 1. In particular, the largest
fraction of communications takes place between people in
the same department, and a much smaller percentage takes
place between people who are in distinct parts of the IBM
management forest.

One can form a single tree from the IBM management
structure by placing a virtual node at the top of the com-
pany, and linking all of the individuals who report to them-
selves up to this virtual node. In this tree we computed
the tree traversal distance between all pairs of people that
communicated using instant messaging, and the results are
shown in Figure 4. From this plot it is evident that the fur-
ther people are from each other in the management tree, the
less likely they are to communicate with each other. The sit-
uation is however slightly more complicated than this, and
the hierarchical structure influences the patterns of social
interactions in other ways. For example, people seem some-
what more likely to talk to their peers, i.e., those at their
same level in the management tree. This explains in part

2We thank Savitha Srinivasan for obtaining access to this
data.

why distance 3 is somewhat less likely than distance 4, be-
cause odd distances correspond to communicating with the
manager of a nearby peer.

Relationship percentage
same department 34.5%

across departments 43.7%
up to manager 7.0%

down to employee 5.4%
outside organization 8.9%

Table 4: Management relationships between parties
engaged in instant message communications inside
IBM
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Figure 4: Distribution of tree distance in the virtual
IBM management tree for users of instant messen-
ger communication. As distance in the management
chain increases, the probability of communication
declines. There is also slight tendency for people to
be more likely to communicate with each other if
they are at the same depth of the management tree,
which is why the odd distances are slightly less likely
than the next larger distance.

The data clearly shows a strong tendency for locality in
communication within a corporation, and provides a further
domain in which to apply hierarchical models of random
graphs.

10. CONCLUSIONS
In this work we concentrated on the properties of the web

graph that are the result of the interaction between two evo-
lutionary processes that shape the web: the growth of hier-
archical structures as reflected in URLs, and the creation of
hyperlinks on the web. We have shown that the hyperlink
structure is highly correlated with the hierarchical structure
underlying URLs. This correlation is particularly strong for
bidirectional links. We therefore conclude that an evolution-
ary model of the web cannot accurately model locality and
bidirectionality properties of hyperlinks without accounting
for the underlying growth process of the hierarchical struc-
ture.

We have proposed a framework for models that incor-
porates an evolutionary process for both the hierarchical
structure and the hyperlink graph. The model is further



motivated by how web sites evolve, from the general to the
specific. Ours is certainly not the final word in models of
the web, and it is natural to expect that more complicated
models will arise in the future that incorporate other fea-
tures. Natural candidates for examination include topical
locality [9] and similarity [12], author relationships, and in-
stitutional missions. It is our hope that the study of the
features of the web that we examine, and the model we pro-
pose to explain them, will lead to a better understanding
of the web and more effective algorithms for information
retrieval tasks.

We have demonstrated that at least one feature of the
actual web graph, namely the compressibility of the link
structure, is directly related to the hierarchical structure.
We believe that many other features of the web graph may
be more accurately explained once the hierarchical structure
of web sites is incorporated into the model.
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