JOURNAL OF ALGORITHMS 10, 531-556 (1989)

On the Distribution of Running Times of Certain
Integer Factoring Algorithms

JAMES LEE HAFNER

IBM Research Division, Almaden Research Center,
650 Harry Road, San Jose, California 95120-6099

AND

KEvVIN S. MCcCURLEY*

Department of Mathematics,
University of Southern California,
Los Angeles, California 90089-1113

Received November 30, 1987; revised September 28, 1988

There are several algorithms for computing the prime decomposition of integers
whose running times essentially depend on the size of the second largest prime
factor of the input. For several such algorithms, we give uniform estimates for the
number of inputs n with 1 < n < x for which the algorithm will halt in at most ¢
steps. As a consequence we derive the best known lower bound for the number of
integers # < x that can be completely factored in random polynomial time. © 1989
Academic Press, Inc.

1. INTRODUCTION

The fundamental theorem of arithmetic states that every integer n > 2
has a unique factorization as a product of primes, except possibly for the
order of the factors. We shall refer to the problem of computing this prime
factorization as the integer factorization problem. There are a large number
of existing algorithms for producing factors (not necessarily prime) of
integers (see, for example, [22, 23, 25]). In almost all cases the analysis of

*Research supported in part by a grant from the National Security Agency. Much of the
research for this paper was carried out while the second author was visiting the IBM Almaden
Research Center. The author is grateful for this support.

531

0196-6774 /89 $3.00
Copyright © 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

532 HAFNER AND MCCURLEY

these algorithms has been devoted to the worst case time and space
requirements. In this paper we shall perform a more thorough investigation
of the running time of some existing algorithms for integer factorization.
Our goal is to investigate the number of integers for which the running time
of these algorithms is smaller than the worst case.

Let A be a deterministic algorithm for solving the integer factorization
problem. We shall consider the quantity F(x, ¢, A), which we use to denote
the number of integers n < x that can be completely factored by 4 in at
most ¢ arithmetic operations involving integers of O(log x) bits. Here by
arithmetic operation we mean a comparison, assignment, or computation of
the binary representation arising from an addition, subtraction, multiplica-
tion, division (giving both remainder and quotient), or application of the
Euclidean algorithm. Each of these operations can be carried out using
O(log? x) bit operations. When A is a probabilistic algorithm, we shall
write F(x, t, A) to denote the number of integers n < x for which A4 will
factor n in at most ¢ operations with probability at least 3. (For a more
rigorous definition, see Section 2.2.)

It is commonplace in the analysis of an algorithm to investigate either the
worst case running time or the average of running times, where one places a
probability distribution on the possible inputs (usually a uniform distribu-
tion). A complete knowledge of F(x,t, A) would allow us to carry out
either analysis. The quantity F(x,t, 4)/x is similar to a distribution
function in probability theory, since it represents the probability that an
integer selected randomly from the interval [1, x] will be factored by 4 in at
most ¢ operations. Much of the recent interest in factoring algorithms has
been motivated by the RSA cryptosystem. For this particular application,
the interest is in factoring integers having two large prime factors. These
integers have the worst case running times for the algorithms that we shall
consider, and consequently our results have little to say for this interesting
application. On the other hand, the notion of prime factorization is of
fundamental importance in algebra and number theory, and it seems
natural to study the behavior of factorization algorithms when the input is a
“random” number. For example, it would be interesting to see if the
integers factored in [5] have the property that their prime factors are about
the size of random integers of the same size (at least after the so-called
“Aurifeuillian” factors have been removed). If so, our analysis might be
useful to predict the work required to extend the tables of [5].

In practice the problem of deciding if an integer of a given size is prime
or composite is usually much easier than the problem of finding a nontrivial
factor for a composite number of the same size. Thus the algorithms that
we shall consider for solving the integer factorization problem will combine
a method for finding factors with a method for distinguishing primes from
composites. -

DISTRIBUTION OF RUNNING TIMES 533

The methods for finding factors that we shall investigate are based on
either the most basic trial division method or the recently discovered elliptic
curve method of Lenstra [19]. These methods are distinguished from others
for several reasons. First they have running times which depend on the size
of the prime factors of the number being factored. The reason we chose the
trial division and elliptic curve algorithms is that they represent the ex-
tremes amongst algorithms of this type, the most naive and the most
sophisticated. An additional feature is that the running times of these
algorithms can be rigorously analyzed on individual inputs, which makes
the statistical analysis somewhat easier.

The running times of some other fast algorithms such as Dixon’s method
(see [22]) depend on the size of the number itself rather than the size of the
prime factors. The quadratic sieve algorithm [22], continued fraction algo-
rithm [21], and Seysen’s class group method [27] also seem to have running
times that are independent of the size of the factors. Therefore the statisti-
cal behavior of these algorithms is less interesting.

There are other algorithms with the property that their running times
depend on the multiplicative structure of the input, including the Pollard
p + 1 methods, the Pollard-Strassen FFT method and (apparently) the
Pollard rho method. The analysis of running times for the Pollard—Strassen
method is very similar to that of trial division, but the analysis for the
Pollard p + 1 and Pollard rho algorithms is more complicated. In any
event, we expect the results to fall in between those of trial division and the
elliptic curve method. The same can be said for the running time of the
class group method of Schnorr and Lenstra [26], where the running time
depends on the size of the prime factors of certain class numbers.

The trial division and elliptic curve methods for finding factors can be
combined with various methods for distinguishing between primes and
composites. It is customary to distinguish between primality tests and
compositeness tests, since a test that attempts to distinguish between primes
and composites may commit several types of errors. For example, depend-
ing on how the actual algorithm is structured, a probabilistic test such as
that of Solovay and Strassen may incorrectly declare a composite to be
prime. On the other hand, the method of Goldwasser and Kilian [12] is
always correct when it declares “prime,” but may fail to produce an output
even if the input is prime. In our analysis it makes little difference, since we
are only counting integers for which there is a high probability of producing
a correct output. In fact, the estimates for F would essentially be the same
whether we use the Solovay-Strassen test or a base 2 pseudoprime test,
even though the latter test is deterministic and is guaranteed to produce
some wrong answers.

Let P, (n) denote the kth largest prime divisor of n, with P,(n) = 1if n
has less than k prime factors (counting multiplicities). Furthermore define

534 HAFNER AND MCCURLEY

¥, (x, y) to be the number of integers n < x for which P, (n) < y. In our
analysis of factoring algorithms we shall make use of some results concern-
ing the size of Y,(x, y). In order to state these results, we define the
functions p, by the relations

p(u)=1, for0<u<l, k=1
po(u) =0, forall u
u—1 dt
pk(u)=1—/; {pk(t)—pk*l(t)}l—ﬂ, foru>1, k=>1.
It is known [17] that p, satisfies 0 < p,(u) < 1, p,(u) is nonincreasing for
u>1,and
eY

po(u) = "

1+0(%)), u>1, (1.1)

In passing we note that a simpler proof of (1.1) can be based on the identity

u u—1
ups(w) = [~ pa(e)at+ [*o()ar, w1
u—1 0
Furthermore, if ¥ > 1 is fixed, then

e(x, x7%) ~ xp(u) (1.2)

as x — oo. For k = 1 this was first stated by Dickman [10], was proved in
this form by Ramaswami [24], and for k > 2 was proved by Knuth and
Trabb Pardo [17]. There is a large body of literature (see [13, 14] for
references) that deals with the question of estimating ¢,(x, x'/*) when u
tends to infinity with x. Of particular interest is the result of Hildebrand,
which states that if y > exp((loglog x)*/3*¢)), then

log(1 + u)

h(x7) - xpl(u)(l + o(oy

). (1.3)

More complicated results have been given for smaller values of y by
Hildebrand and Tenenbaum [14}. Our analysis of factoring algorithms will
require a similar result for ,(x, y). This is given in the following theorem,
which is of independent mathematical interest.

THEOREM 1.1. For 2 <y < x, we have

o) = 3,1+ 0[=),

where u = log x /log y.

DISTRIBUTION OF RUNNING TIMES 535

The proof of Theorem 1.1 will be given in Section 4. Our results on the
elliptic curve method require a somewhat more complicated statement given
in Section 4.2.

We are not the first to have considered the quantity F(x, ¢, 4). Knuth
and Trabb Pardo [17] (see also [16, Section 4.5.4]) investigated the most
basic integer factorization algorithm that relies exclusively on trial division.
For this algorithm A, they gave estimates for F(x, x}/% A) that are valid
for fixed u > 1. Because of the limitation (that u is fixed) in the result (1.2),
they were not able to deal with smaller running times. We shall consider
somewhat faster algorithms and obtain uniform estimates that allow u to
tend to infinity.

An unsolved problem from [1] asked whether there exists a deterministic
algorithm A and a positive constant C such that

. F(x,log€ x, A)

limsup —mm >

X—00 X
This may be rephrased as asking whether there exists a deterministic
algorithm A and a set of integers S of positive density such that 4 will
factor any element of S in deterministic polynomial time. At present there
is no known algorithm for which this is satisfied. The present paper is
motivated in part by a desire to clarify how many integers can be factored
with such short running times using presently known factorization methods.

Our results on factoring in polynomial time can be summarized as
follows. If A uses trial division and the Solovay-Strassen test, then we
obtain
e*Cx loglog x

F(x,log¢x, A) ~ Tog x

and if A uses the elliptic curve method and the Solovay-Strassen test, then

x(loglog x)*°~*

F(x,log€x, A) >
(x,10gx, 4) >c log x

In both cases the integers that are counted are those that have at most one
large prime factor. It is interesting to note that the sophisticated elliptic
curve method does only marginally better than trial division in this statisti-
cal sense.

2. ALGORITHMS BASED ON TRIAL Division

Algorithms based on trial division have numerous variations, of which
the simplest is the one analyzed in [17], where it is presented in Algol-like

536 HAFNER AND MCCURLEY

notation as follows:
ALGORITHM TD (trial division factoring algorithm). Input an integer
n > 2, and output an integer k and primes p,,..., p, with n = e p.

k=0, m:=n; d:=2,
while d2 < m do

begin
if d divides m then
begin
k=k+1; p,=d, m=m/d
end
else d=d+ 1;
end

k=k+1, pp=mm=1d=1;

The number of operations used by this algorithm is proportional to
max{ P,(n), /P,(n) }. One disadvantage of using this algorithm is that the
running time is seldom very short. In order for an integer n to be factored
in time ¢, we require at least that P,(n) < ¢* Hence if A4 is the trial division
algorithm given above, then F(x, t, 4) < ¢,(x, t*), and the latter quantity
is quite small when ¢ is small. For example, if 1 = log® x for some ¢ > 1,
then it follows from the results of [14] that ,(x, t?) = x!71/2¢+°® a5 x
tends to infinity.

The algorithm given above makes use of trial division as a primality test,
since it only declares the number m to be prime if it has already been
divided by all of the integers d with 2 <d < Vvm . It was observed by
Knuth and Trabb Pardo that if a more sophisticated primality test was
used, then the resulting algorithm would have running time proportional to
P,(n) instead, and the result is that it would frequently run much faster.
Very efficient methods are now available for distinguishing between primes
and composites, including among others the deterministic algorithm of
Adleman, Pomerance, and Rumely [2], the probabilistic test of Solovay and
Strassen, the probabilistic test of Rabin (based on ideas of Miller) (see [29]
for a discussion of these probabilistic tests), and the probabilistic test of
Goldwasser and Kilian [12]. In the following two sections we shall analyze
trial division algorithms that make use of some of these methods, giving
asymptotic estimates for F(x, x}/* A) that are uniform in u.

Let pr be the characteristic function of the set of prime numbers, i.c.,

r(m) = 1, if m > 2is prime,
PIUM) =10, if m > 2is composite.

Note that among the aforementioned methods for computing pr, only the

DISTRIBUTION OF RUNNING TIMES 537

Adleman—Pomerance—Rumely algorithm is guaranteed to correctly com-
pute it for all inputs. Without specifying how pr is to be computed, we can
informally state the basic trial division algorithm in the following form.

ALGORITHM TDP (trial division with primality /compositeness test). In-
put an integer » > 2, and output an integer k and primes p,,..., p, with
n=1I1_p,

Step 1. Set k=0, m=n, d:= 2.

Step 2. If pr(m) = 1, then set k = k + 1, p, = m, and halt.

Step 3. If d divides m, then set k:==k + 1, p,==d, m:=m/d, and go
to Step 2. Otherwise set d :== d + 1 and repeat Step 3.

Further refinements of this algorithm are possible, and probably advis-
able in any implementation. The most obvious one is to restrict the
sequence of trial divisors d so that it includes fewer non-primes. This can
be done, for example, by restricting d to be odd when 4 > 2, or of the form
6j + 1 when d > 3. These modifications affect the running time by an
easily determined constant factor, so that our analysis will apply to these
more refined variations.

Let Q(n) denote the total number of prime divisors of n, counting
multiplicities. Let R(m) be a nondecreasing function that bounds the
number of operations used to compute pr(m) (clearly this depends on the
algorithm used). Neglecting the operations required to compute pr, it is
easy to see that algorithm TDP uses a total of 3Q(n) + 2 assignments,
Q(n) + Py(n) — 1 comparisons, (n) + P,(n) — 2 additions, and P,(n)
— 1 divisions. The number of operations required for computing pr(-) is
given by

Q(n)

Y R

i=1

jLiIle(n)).

Since (n) < logn, it follows that the number of operations used by
algorithm TDP is bounded between 3P,(n) and 3P,(n) + O(R(n)log n).

2.1. Trial Division and the Adleman—Pomerance—Rumely Primality Test

Among deterministic tests, the fastest unconditional test is due to
Adleman, Pomerance, and Rumely [2] (see [8, 9] for a version that is more
suitable for implementation). For this algorithm we have R(n) <
(log n)©@Uoslogloem) [et TDAPR denote the trial division factoring algorithm
TDP combined with the Adleman-Pomerance—Rumely algorithm. The
number of operations used by TDAPR is bounded between 3P,(n) and
3P,(n) + (log n)C'oeloeloen for some positive constant C. Hence for

538 HAFNER AND MCCURLEY
t > (log x)€loeloeloex we have
¥ (%, 42 — (log x) € %1% *)) < F(x, t, TDAPR) < y,(x,1/3).

If ¢ satisfies
t

- o0
Cloglogl)
(log x) = &8 8~

then it follows from Theorem 1.1 that

log x 1 1 F(TDAPR log x 1 (1)
+ < , 1 < +
XP2 10gt/3 { 0()} X) XPy 10gt/3 { 0 }
as x — oo. The mean value theorem then implies that
F TDAPR log x
t ~ — .
(e 1,) = xp, log ¢

If in addition we have (log x)/(log) — oo, then (1.1) gives

xeYlogt
F(x,t,TDAPR) ~ —l—g‘—
og X

One might reasonably ask what happens for smaller values of ¢ than we
have considered so far. We have used only the worst case running time
estimate for the Adleman—Pomerance-Rumely test, and in order to treat
lower running times, we would need to know more about the distribution of
running times for the Adleman-Pomerance—Rumely test. It is known that
the worst case running time estimate is sharp, in the sense that if a prime p
is tested via their method, then the running time is bounded below by
(log p)C'loeleeloe » for some constant C’ > 0. It appears, however, to be very
difficult to say anything about the running times for composite inputs.

2.2. Trial Division and the Solovay—Strassen Test

The definition of F(x,t, A) requires some clarification when A is a
probabilistic algorithm. One way of analyzing a random algorithm for
factoring is to view it as a deterministic algorithm that receives as input the
integer n to be factored and a finite sequence R of residues modulo n that
will be used as a set of random numbers. We shall adopt the convention
that each probabilistic algorithm A is equipped with a nondecreasing
integer valued function f such that if n is the first input to 4, then R has
f(n) elements. Furthermore, in our analysis of probabilistic algorithms we

DISTRIBUTION OF RUNNING TIMES 539

shall count the reading of an element of R as a single operation, since in
practice it should take about as long as a comparison or assignment.

If A4 is a random algorithm, then A may fail to produce a correct output
for one of two reasons; either the algorithm produces no output, or else the
algorithm produces an incorrect output. In the case of the integer factoring
algorithms that we analyze here, the output can only be incorrect if one of
the factors is composite.

When we speak of the probability that a probabilistic algorithm A fails
to factor a number »n in t operations, we are speaking of the proportion of
inputs R for which A fails to factor n, i.e., the ratio

{ R: A fails to factor n in < ¢ operations with input R }
fm '
n

P(n,t) =

For t > f(x), we now define
F(x,t,A)=#{n:2<n<x,P(n,t) <3}

This now gives a precise meaning to the statement that F(x, t, A) gives the
number of integers n with 2 < n < x such that 4 will correctly factor n in
not more than ¢ operations with probability at least .

As mentioned above, there are several probabilistic methods that attempt
to compute pr. We shall consider here the probabilistic method of Solovay
and Strassen, but similar analyses could be carried out for the other
methods. The idea in Solovay and Strassen’s method is centered on Euler’s
criterion, which states that if m is an odd prime, and if ged(a, m) = 1, then

atm-b/2 = (%) (mod m). (2.1)

A theorem of Lehmer states that if m is odd and composite, then the
number of integers a with 1 < a < m and ged(a, m) = 1 for which (2.1) is
satisfied is at most m/2. The method then consists of choosing random
integers a with 1 < a < m, and testing whether (2.1) holds. If (2.1) fails,
then we declare m to be composite, and if (2.1) holds, then we declare m to
be prime. If the test is repeated k times with randomly chosen a’s, then the
probability that a composite number will be declared prime k consecutive
times is at most 27%, and the probability that a prime number will be
declared composite is 0.

Let us now consider an algorithm, denoted TDSS, that combines the trial
division algorithm TDP with the test of Solovay and Strassen. Suppose that
each time a divisor m of n is tested, we use at most [cloglog n] different
choices of the base a. If any of the tests declare m to be composite, then we
have a proof that m is composite, so we halt the test. If all of the tests say

540 HAFNER AND MCCURLEY

that m is prime, then we declare m to be prime and proceed as if
pr(m) = 1. Each time we test an integer m, we make an error with
probability at most 27¢'°8!°8"_ Since we test at most log n numbers m, we
have that the probability of factoring n incorrectly is bounded above by 3,
provided c is chosen sufficiently large.

Using the binary method of exponentiation (see [16, Section 4.6.3]) and
the law of quadratic reciprocity (see [16, pg. 396]), we can test whether (2.1)
is satisfied in O(log m) operations. In order to test whether a number m (a
divisor of n) is prime or composite using this method, we need to read at
most O(log log n) random residues a modulo n. For each of these we check
if (2.1) is satisfied, so that a complete test of an integer m requires
O(log m log log n) operations. Since there are O(log n) integers m to be
tested, the number of operations used by TDSS to follow this procedure for
an integer n is bounded between 3P,(n) and 3P,(n) + O(log? n loglog n).

It is now easy to state a result for F(x, ¢, TDSS). Note that P(n,t) < 3
if and only if the algorithm got so far as to divide out P,(n) and test if
P,(n) is prime or composite. Hence arguing as we did for TDAPR, if
t > C(log x)? loglog x for a sufficiently large constant C, then we have

¥(x, 3(r = Cllog x)* loglog x)) < F(x, , TDSS) < ¥y(x, 1/3).

If ¢ satisfies
t

> - o0, (2.2)
log x)" loglog x
)

then it follows from Theorem 1.1 that

log x
F(x,t,TDSS) ~ xp,

log ¢
From this and (1.1) we easily deduce the following theorem.
THEOREM 2.1. If (2.2) holds and (log x)/(log t) — oo, then
xe¥logt
F(x,t,TDSS) ~ ——
log x

Note this is better than for TDAPR in that ¢ can be taken much smaller.

As a result, it follows that the number of integers that can be completely
factored with high probability in polynomial time by algorithm TDSS is
bounded below by

Cx loglog x
log x

for every C > 0 (here C depends on the degree of the polynomial bound).

DISTRIBUTION OF RUNNING TIMES 541
3. AN ALGORITHM BASED ON THE ErriprTic CURVE METHOD

An interesting method of searching for factors that uses the arithmetic of
elliptic curves was recently discovered by H. W. Lenstra, Jr. [19]. The
method can be viewed as a generalization of the Pollard p — 1 method.
Pollard’s method works well when the number n being factored has a prime
factor p for which p — 1 has all small prime factors. The more general
elliptic curve method is expected to work when the interval [p — ‘/; , D
+ ‘/17] contains sufficiently many suitably smooth integers (a smooth
integer is one all of whose prime factors are small). It was conjectured by
Lenstra that this method can be used to find a nontrivial factor of » in
expected time L(p)¥2 +°® log? n, where p is the smallest prime factor of n
and L is defined as L(y) = exp(ylog yloglog y). This remains only a
conjecture, but there has at least been some partial progress toward this
goal. Pomerance used a result of Friedlander and Lagarias to prove that
almost all primes (in a quantitative sense) have the property that the elliptic
curve method will detect them as factors of integers in a fairly small
number of operations. By combining this result with Dixon’s random
squares method, he proved the existence of a factoring algorithm with a
rigorously proved worst case running time of L(n)"2*°®_ More recently,
A. K. Lenstra [18] has used a similar analysis to show that under the
assumption of a generalized Riemann hypothesis there exists an algorithm
with worst case running time L(n)'*°®". We do not consider these algo-
rithms here, since their running time seems to be independent of the size of
the prime factors.

We shall follow the lead of Pomerance in confining our attention to
algorithms whose running times can be analyzed without any hypotheses.
By applying Pomerance’s argument and a result from Section 4.2 we shall
prove that the elliptic curve method can be used to completely factor a large
number of inputs fairly rapidly. In other words, we shall give a lower
estimate for F(x, t, A).

The actual algorithm that we shall analyze will be denoted by TDEC and
is a combination of the following methods:

1. Trial division of the integer n to be factored by all integers up to a
given limit z = z(n) > 3. We shall also employ a test to determine if
remaining factors are prime powers, using Newton’s method and the
Solovay-Strassen test.

2. The Solovay-Strassen test (an analysis using the Adleman—
Pomerance—Rumely or Miller—Rabin tests is very similar).

3. Application of the elliptic curve method to find any remaining
prime factors.

542 HAFNER AND MCCURLEY

With the inclusion of some trial division at the beginning, this algorithm is
close to the way that any practical implementation of the elliptic curve
method is likely to be done; the elliptic curve method is after all an
exceedingly inefficient method for finding out that the number being
factored is divisible by 5!

Our description of the elliptic curve method itself will be very sketchy,
and will be given in Section 3.1. For a complete description, the reader is
urged to consult the original paper of Lenstra [19]. For details of how to
implement the basic algorithm, see [4, 7, 20]. Following Pomerance, we now
define

Yo(x, y) = \Pl(x +Vx, Y) - ‘lbl(x —Vx,)’)-

Our inability to prove the conjectured running time of the elliptic curve
method is due to the fact that we are unable to give precise lower bounds
for the quantity y,(p, L(p)®). It was conjectured by Lenstra that for every
a > 0 and prime p we have

Yol P, L(p)") > VP L(p)"/E0. (3.1)

It remains unknown whether (3.1) is true, but there are some unconditional
results in this direction. Let 0 < # < 1 and let S; denote the set containing
the number 1 and the primes p > 3 for which

Vo[p.exp{i(log p)’}) > Vp exp{ —(log p)' " loglog p }.

Note that the heuristic y4(x, y)/ Vx = ¢;(x, y)/x implies that S, should
contain all sufficiently large primes, and it also implies Lenstra’s conjecture
(3.1). The essential fact concerning S, that we shall require is that it
contains almost all primes, at least if 8 is not too small. More precisely, the
following result follows from an argument of Pomerance in [23], and is a
direct application of a theorem of Friedlander and Lagarias.

THEOREM 3.1. If m(x) denotes the number of primes p < x, and my(x)

the number of such primes in Sy, then for every 8 > ; we have

7(x) — mp(x) <4 x - exp{ - %(logx)l/é}.
We now state the main result that will be used to analyze the elliptic

curve method. It is essentially the same as Pomerance’s Theorem 2.1 in [23]
(Pomerance stated it with § = $).

DISTRIBUTION OF RUNNING TIMES 543

THEOREM 3.2. Let § > 3 and v > 2. There is a probabilistic algorithm
ECM,(v) with the following properties. It receives as input an integer m > 1
(and the parameters v and 0), and produces as output integers r, s, and
qpr---»q, with m =rlli_,q, (possibly s=20 and r=m). For all m,
the probability is at least § that all of q,, ..., q, will be prime and that no
prime less than or equal to v and in Sy will divide r. If v > log m, then the
number of operations used by ECM,y(v) is O(exp{3(log v)?Ylog m +

log? m log log m).

The proof of this result is essentially the same as that given by
Pomerance, and will be given in Section 3.1.

It is clear from Theorems 3.1 and 3.2 that ECM,(v) can be used to
produce “most” prime factors < v. We now describe the algorithm TDEC,
and as in the case of trial division, we leave unspecified the method of
computing pr. We have also suppressed any mention of the fact that the
algorithm receives as input a string of random residues modulo n.

ALGoriTHM TDEC. Receives as input an integer n, and outputs inte-
gers m, k, and p,, p,,..., pi such that n = mIT{_ p,.

Step 1. Set k =0, m = n, d =2, and z(n) = max{3, [2log n}}.

Step 2. If pr(m) = 1, then set k == k + 1, p, = m, and halt.

Step 3. If d divides m, then set k == k + 1, p, ==d, m:=m/d, and go
to Step 2.

Step 4. Set d :=d + 1. If d < z(n), then go to Step 3.

Step S. Set v := 2z(n).

Step 6. (Check if m is a prime power). For i =2,..., [log m}, check if
m = [m'/]" with pr({m'/’]) = 1. If this is true for any i, then set
py=Im for j=k+ 1. k+i k:=k+i m= 1, and halt.

Step 7. Apply ECM,(v) with input m, producing outputs ¢;,..., g, and
r. If s> 0, then set p,, =4, for j=1,...,s, k:==k+s, and
m:=r.

Step 8. If pr(m) = 1, then set k == k + 1, p, = m, and halt.

Step 9. Set v :=2v. If v > n, then halt; otherwise return to Step 6.

We shall henceforth assume that pr(m) is “computed” using the
Solovay—Strassen algorithm. This test is used implicitly in ECM4(v), so we
save the description and analysis of its use there for the proof of Theorem
3.2. For its explicit use in Steps 2, 6, and 8 of TDEC, we apply the
algorithm with up to a maximum of [2log(8log n)] random bases modulo
m. It follows that the total probability of error from the Solovay—Strassen
algorithm declaring a composite integer prime is at most

Q(n)2-218@lem < (21og n)exp(—log(8logn)) = §.

544 HAFNER AND MCCURLEY

The rest of this section will be devoted to proving a lower bound for
F(x,t, TDEC). We will relate this quantity to the cardinality of the set

Ey)(x,y)={n<x:P(n) <y, k=2=P/(n) € SyorP(n) <z(n)},
(3.2)

where, in the application, y will depend on x and ¢.
First we give a lower bound for the cardinality of E,(x, y). For an
arbitrary set Q, define

Vo(x, 9, 0)=#{n<x:Py(n)<yand k 22= P (n)€Q}. (3.3)

If Q istheset Q, = S, U { p: p < log x } then every integer greater than Vx
and in Ey(x, y) will be counted by ¥,(x, y, Q). We shall prove in Section
4.2 a general result from which we easily deduce

lIIIZ(X, y’QO) ~\P2(x’ y) (34)
provided 6 > 2, y/log x = o and x — oo. Hence under these conditions,
#Eﬂ(x’ y) Z‘PZ(X’ y){l +0(1)} (35)

Next we need to compute the running time of TDEC for input integers
from E,(x, y). Let n € E4(x, y) and set v, = 2z(n), i > 1. Clearly algo-
rithm TDEC will have correctly output the factorization of n with probabil-
ity at least 1/2 as soon as it completes Step 8 for v = v, satisfying
y < v, <2y (in which case k < log y). The total number of operations
performed by TDEC in Steps 1-5 is easily seen to be < log? nloglog n.
Furthermore, the number of operations performed in each of Steps 6 and 8
is < log? n loglog n each time they are performed. Since Steps 6—8 will be
executed at most O(log y) times, the total number of operations used by
TDEC to factor an integer n € Ey(x, y) is

< logZnloglogn + (log y) {exp(%(log v,()o)log n + log? n loglog n}
< log® x loglog x + exp(%(log y)a)log X.

If exp((3loglog x)"%) <y < x and x is sufficiently large, then this run-
ning time can be estimated above by at most exp((log)?)log x operations.
Hence if ¢t > log* x, it follows from (3.5) that

F(x,t,TDEC) > ¢,(x, exp{log"/®(¢/log x)}) {1 + o(1)}. (3.6)

We can now draw several conclusions. The first of these is that if
t > exp((log x)?), then F(x,t, TDEC) ~ x. In other words, almost all
integers n < x can be factored by the elliptic curve method in expected

DISTRIBUTION OF RUNNING TIMES 545

time exp((log x)?). The algorithm REC of Pomerance [23] does better than
this, since all integers can be factored in expected time L(n)Y2*°® by
Pomerance’s algorithm. On the other hand, TDEC has polynomially
bounded running time for considerably more inputs n < x than REC does,
as demonstrated by the following theorem.

THEOREM 3.3. Let § > 2. Ift > log* x and logt = o(log? x), then

xe¥{log(z/log x)}'/*
log x

F(x,t,TDEC) > {1+0(1)}.

The proof follows easily from Theorem 1.1, (1.1), and (3.6). Note that
this gives the best lower bound known for the number of integers that can
be factored in random polynomial time (by any known algorithm). In
closing we note that Lenstra’s conjecture (3.1) would allow us to prove
Theorem 3.3 with any 6 > 3.

3.1. Proof of Theorem 3.2

Let e(r) = e(r,v) be defined as the largest integer m with r™ < v +
2Vv + 1, and define

[w]

k(o,w) = T1re.
r=2

The elliptic curve method consists of repeatedly applying the following
basic steps, which involve two parameters v and w. The inputs a, x, and y
are to be thought of as random residues modulo m.

Basic steps (receives m, v, w, a, x, and y as input, and either produces
no output or a proper factor of m).
Step 1. Compute b = y? — x3 — ax, so that P = (x, y) is a point
on the curve y2 = x3 + ax + b,
Step 2. Attempt to compute the point k(v, w) - P (mod m) using
the partial addition procedure described by Lenstra [19].

In Step 2 we say attempt to compute k - P, since the procedure for
adding points on the curve may break down. In this case, however, we
produce a nontrivial divisor of m. As we stated previously, the proof of
Theorem 3.2 is essentially the same as in [23]. We make use of the following
result of Lenstra.

THEOREM 3.4. There is an effectively computable constant ¢ > 0 with the
following property. Let n and v > 1 be such that n has at least two distinct
prime factors > 3, and such that at least one of the prime divisors p satisfies

546 HAFNER AND MCCURLEY

p <v. Let w be such that yo(p,w) > 3. Then the success probability of
obtaining a non-trivial divisor of n using h > 2 iterations of the basic elliptic
curve steps with parameters v and w is at least

1- exp{ —chyo(p,w)/(yplog v)}

The only difference between Theorem 3.4 and Lenstra’s Corollary 2.8
from [19] is that Lenstra assumed the additional hypothesis that p should
be the smallest prime factor of n. An examination of the proof reveals that
this is not required.

We now turn to the proof of Theorem 3.2. By dividing out any factors 2
and 3, we may assume that gcd(6, n) = 1. Let 8 be greater than ¢ and set

w= exp(%(log v)a)
h = [c‘l(log v)log(32log m)exp((log v)' "’ loglog v)],

where c is the constant of Theorem 3.4. We shall perform the basic steps of
the elliptic curve method with inputs m and random residues a, x, and y
modulo m, using parameters v and w. We continue to perform this
procedure until we discover a nontrivial factor of m or else we complete the
basic steps 4 times. If a nontrivial factor of m is discovered, then we test
whether each of the newly discovered divisors is a prime power using
Newton’s method and at most [2log(32logm)]| iterations of the
Solovay—Strassen test. For each newly discovered divisor that is not a prime
power, we repeat the whole process.

We now estimate the running time of the algorithm. By the results of [19],
the attempt to compute k(v, w) - P requires at most O(hw log v) “partial
additions” on the curve, each of which takes a bounded number of our
operations, giving O(hw log v) operations to complete this phase. Let us
now assume that this phase discovers two proper divisors. The number of
operations required to determine if they are prime powers is O(log m
log log m) for the application of Newton’s method and the same number for
the application of the Solovay and Strassen method. Since @(m) < 2log m,
there are at most O(log m) proper divisors of m for which the whole
process is repeated, giving a total running time of

< hw(log v)(log m) + log? m loglog m
< (log m) exp{ 2(log v)”} + log? m loglog m,

provided log m < v. (This part of the analysis will also apply when 8 > 3.)
In order to complete the proof of Theorem 3.2, it suffices to prove that
the probability of error is at most . An error can occur in one of two ways:

DISTRIBUTION OF RUNNING TIMES 547

either the Solovay—Strassen test mistakenly declares a composite number to
be prime, or else we run the basic steps on a composite number having a
prime factor less than or equal to v and in S, but a factor is not discovered.
Since there are a total of at most 2Q(n) < 4log n numbers that will be
tested, and the probability of error on any one number is at most
2~ 2los32loem) < 1 /(321og n), the total probability of an error in testing is at
most 1.

If m has at least two distinct prime divisors and at least one prime factor
p < v in S,, then by Theorem 3.4 the probability of failing to produce a
nontrivial divisor of m with h iterations of the basic steps is at most

exp{ —chyo(p, w)/(Yplogv)} < 1/(321og m).

Since we shall repeat the basic steps for at most 4log m numbers, the
probability of an error occurring when r is divisible by a prime less than or
equal to v and in S is at most §. Hence the total probability of error for
the algorithm is at most . This completes the proof.

4. RESULTS ON {,(x, y)

There are several methods that can be used to prove an asymptotic result
for Y,(x, y). The method used by Knuth and Trabb Pardo [17] is similar to
an earlier method of de Bruijn, and can probably be refined to produce
uniform estimates when log x/log y is large. We shall, however, use a
different method to produce such estimates. The method that we use is
similar in spirit to the method of [17] in that it uses a Buchstab-type
identity involving ¢, and v,. In Section 4.2 we shall prove the asymptotic
estimate for ,(x, y, Q@) that was used in Section 3. In the last section we
outline a more complicated method that can be used to give a more precise
estimate for {,(x, y) when y is small compared to x. It uses a truncated
form of the Perron inversion formula and is similar to a proof of the prime
number theorem. This last method is not needed for the analysis of
factoring algorithms, but we include it here because of its independent
interest.

4.1. Proof of Theorem 1.1

Note that if 1 < u < 2, then the conclusion of Theorem 1.1 is trivial. The
key ingredients of the proof for u > 2 are Hildebrand’s result (1.3) and the
identity

) =h(x)+ L on(), (41)

y<p<x

548 HAFNER AND MCCURLEY

The proof of (4.1) is trivial, and we omit it. We also require two estimates of
de Bruijn [6], namely, for u > 1,

pu(w)log(1 + u) < e, (42)
and that there exists a constant D with 0 < D < 1 such that

logx)

(4.3)

(x,y) < xexp(—Dlogy

uniformly for 2 <y < x.
If #(¢) denotes the number of prime numbers < ¢, then the prime
number theorem implies that «(r) = li(z) + E(¢), where li(¢) =
def
S(dw/log w) and |E(¢)| < B(1) = texp(— ylogt). Using this relation,
(4.1) can be written as

bale) =)+ [0 5o) oy + [0l 5] aE o)
= xp,(u) + xfyx/ypl(u - llzgg;) zlztgt + f;y%(é, y) 1:%
ol ol el 2|2
+O(4(x,) =3) + [l 7. 9] dE ()
=M, + M, + M; + O(E,) + O(E,) + E;, (4.4)

say. First notice that

M, = f;yxp(é,y) %; = j:;y[%] I(j% = xlog(u i 1) + 0(li(x)).
(4.5)

Now, Lemma 5.1 of [17] gives the identity

u—1 Pl(W)

u—w

mw)=mu)+m4;%7)+£ dw.

Combining this with (4.5) and making the change of variables w = u —
log t/log y in M,, we get

M, + M, + My = xp,(u) +0(ulogy)' (4.6)

DISTRIBUTION OF RUNNING TIMES 549

It remains only to estimate the error terms E,, E,, and E;.
We first estimate E, since that is the easiest. If y > exp((loglog x)?),
then it follows from (4.2) and Hildebrand’s estimate (1.3) that

xpy(u) log(1 + u)

E <
2 log y

xe *

< .
log y

If y < exp((loglog x)?), then we use (4.2) and (4.3) to deduce

log x x
E, < xexp| —D < .
log y ulog y

Hence,
X

ulog y’

E, <

uniformly for u > 2.
For the estimate of E; we use a similar but slightly more complicated

procedure. Let z = max{ y, x/exp(expy/log y)}, 6 = log z/log y, and write

z Y, X x log ¢
El«{f +fx y} ¢1(7,)’)_7P1(u—@)
y z

= E; + Ep,

dt
log ¢

say. For z < t < x/y, we again apply (1.3) and (4.2) to obtain

X x log ¢ log(x/t dt
E, < f/ypl(u— g)1og(1 + 8(x/))

log y log y log y tlogt
X u—sp(w)log(l +w
SRy RAGL K
log y /1 u—w
X u-s €%
dw.
= logyfl u—w it

This last integral is easily seen to be bounded by 1/u by splitting it at u/2.
Now for E,,, i.e., the range y < ¢t < z, we will appeal to (4.2) and (4.3). If
z = y then this part does not occur, so we assume that y exp(expylog y) < x.

550 HAFNER AND MCCURLEY

We have

z D log ¢ dt
E11<<x/;exp{— u_logy flog ¢

u—1 _ Dw dw
<x[" e
u—18 u—w

x
<3 e PE—w) (4.7)

Let 8 = u — f(y), so that f(y) = exp(ylog y)/log y. In the case that
u > 2f(y), the quantity (4.7) can be estimated as 2xu ' exp(—Df(y)),

which is clearly < x/(ulog y). If, on the other hand, we have u < 2f(y),
then we bound (4.7) by

D
xexp(=Df(y)) < xexp| == f(y) — Du/4

X

< i
ulog y

Combining this estimate for E;; with the estimate for E,,, we conclude that
E, < x/(ulog y).

Finally, we estimate E, from (4.4), and this will complete the proof of
Theorem 1.1. Since ,(x/¢, y) is nonnegative and monotone decreasing,
and B(t) (the bound on the error term in the prime number theorem) is an
increasing differentiable function, we easily deduce by two integration by
parts that

[Es| =

[o(%) a0

y
X
t

<20,(x/p 2)BO) + [0 5. v) aB()
y
< xexp(—Du — flog y)
x log ¢ dt
+xe'D“f exp{Dlogy - \/10?} e (4.8)

y

Here we have used the relations (4.3) and 0 < B'(¢) < exp(— ylog). The
first term in (4.8) is clearly of much smaller order than the error term
claimed in the theorem. In the last integral in (4.8), we make the change of

DISTRIBUTION OF RUNNING TIMES 551

variables w = u — log t/log y to obtain

x log yfude‘Dw exp(—,/(u - w)logy) aw,
0

and since we are assuming u > 2, this integral is bounded by

x log y{/u/zexp(—Dw - \/élogx) dw + fuflexp(—Dw - \/logy) dw}
0 u/2
< xlogxexp(—ﬂ%logx) + x log yexp(—Du/2 — Vlog y)

< x/ulog y.

Combining this, (4.6), (4.4), and our previous estimates for E; and E,, we
deduce the theorem.

4.2. An Estimate for ,(x, y, Q)

In our analysis of the elliptic curve factorization method, we required a
slight generalization of Theorem 1.1. (See formula (3.4).) For an arbitrary
set O, let Y (x, y, Q) be defined by (3.3). Note that if Q contains the
number 1 and all primes, then Y,(x, y, Q) = ¥,(x, y). The following result
shows that if Q contains all but a very thin set of primes, then ¢,(x, y, Q)
is very close to ¢,(x, y).

THEOREM 4.1. Let Q be any set containing the number 1. Then

4’2(3‘» y.Q) = \Pz(X, y) 1+0

> pl) ,
P=y
PEQ

uniformly in Q.

Proof. 'The quantity ¢,(x, y) — ¥,(x, y, Q) counts the number of posi-
tive integers n < x with Py(n) < y such that there exists an integer j > 2
with P,(n) & Q. Hence Theorem 1.1 gives

0 <y,(x,»)— Yo(x, y,0) < Z xpz(%, y)

p<y

PEQ

1 lo
<x) ;Pz(“" gP)

p<y log y
PEQ
< xp,(u—1) X 1/p.
p<y
PEQ

Since xp,(u — 1) < {,(x, y), this proves the desired result. O

552 HAFNER AND MCCURLEY

One might expect under certain conditions that

1IJZ(X’ Vs Q) - 4/2(x’ y)].—[(1 - l/P)
psy
PEQ
In fact we can prove such a result using the methods of the following
section, but we omit this since Theorem 4.1 suffices for our application.
Let 6> 2,and Qy={p: p <logx} US, be as in Section 3. Theorem
3.1 easily gives

Y 1< exp{ —1(loglog x)l/é},
pP=y
PEQy

provided y > log x. From this we may conclude the result (3.4) as claimed.

4.3. An Analytic Method

In this section we sketch a proof, by analytic means, of a formula for
¥,(x, y) that is more precise than Theorem 1.1 for certain ranges of x and
¥, and may therefore prove useful in future investigations. Let

1 1

b= i PR e

mm{logy Vlogx}
Dz(S’J’)= Z 1/n’,

Py(nm)<y

Dy(s,y) =TT —-1/p) "

p=y
Our result is the following.

THEOREM 4.2. With u = log x/log y, we have

1 x!
¥aolx, y) = _/bbDl(f, y)T dt + O(xlog3xmax{e*“,e‘vng})_

Before sketching the proof, we make a few remarks. First, the break point
of the maximum in the O-term is at y = exp(ylog x) (as it is in the
definition of b). For this O-term to be an error term, we need to assume at
least that u > (3 + &8)loglog x for some 8§ > 0. Also, the form of this error
term is dictated by the simple form we choose for the zero-free region of the
Riemann zeta function. By using more refined information here, the second
expression in the maximum could be replaced by the usual expression in the
error term for the prime number theorem. (This would require a corre-
sponding change in the definition of b.)

DISTRIBUTION OF RUNNING TIMES 553

Our second remark deals with the main term. This integral satisfies

1o)x’ J xe? 1+ 0 1
t,y)—dt=—{1+
-/;_b 6y t u log x

+ o(e—@)}. (4.9)

To see this, set f(t) = D(¢)/t with D(¢) = D,(t, y) and integrate by parts
to obtain

fx fa-pr 1

log x log x - log x

fl f()x"dr = fl f()x"dr.
1-b 1-%

It is a simple consequence of the prime number theorem that
f(Q)=evlogy + O(e V*¢») and f(1 — b) = O(log y).
Also, using a similar calculation and the representation

22w -),

f(1) =
one can show that

f(t) = 0(log? y)

uniformly for 1 — b < ¢t < 1. These estimates are sufficient to prove our
claim (4.9). Again the second O-term in (4.9) can be improved by using a
stronger form of the prime number theorem.

Furthermore, by repeated integration by parts, one can show that the
integral in (4.9) has an asymptotic expansion in the form

* P.(lo
XZP(g))

Z Tlogn)? + 0(x'7?), (4.10)

where P, (¢) is a polynomial of degree k with leading coefficient ¢, _, given

by
o0 k o0 k
iz z
Y - exp{ Y — }

1
k=0 k!

Combining (4.10) with Theorem 4.2 yields an asymptotic expansion for
¥,(x, y) itself, provided u tends to infinity as before. This should be
compared with the asymptotic expansion for p,(u#) given by Knuth and
Trabb Pardo [17]. Since there is no a priori reason that an asymptotic
expansion for {,(x, y) should have the form x times a function of u, we
see that (4.10) contains in fact more precise information.

554 HAFNER AND MCCURLEY

We now proceed with the sketch of the proof of Theorem 4.2. We have

mmw=mmm&+zé}

P>y

1
=D@»W%mr-zﬁ+3m} (4.11)
Py

where B(s) is analytic in ¢ = Res > }, and bounded for Res > 3, say.
With b be as above and T chosen so that b = 1/log T, we conclude that for
T sufficiently large, D,(s, y) is analyticin o > 1 — 2b, |¢| < T, except for
a logarithmic singularity at s = 1. Using a truncated form of Perron’s
formula (e.g., Lemma 3.12 of {28]) and putting a = 1/log x, we find

1

1+a+iT x°
¥o(x, y) = 2_/ D,(s,y)—ds + O
Tl 1 +a—iT s

xlogx)

In the next step of the proof, we move the path of integration into the
region ¢ < 1 in a manner similar to that used in the proof of the prime
number theorem which uses the generating function log {(s). (See, for
example, [3, Section I1.5] for this proof.)

The main contribution to the resulting integral comes from a term of the
form

1

D * d
dai ‘/;(8) Z(S’ y) P S,

where L(8) is a curve surrounding s = 1 which starts at s = 1 — b, moves
to s =1 — §, then loops around s =1 in a circle of radius 8, and then
returns to s = 1 — b,

To complete the proof of Theorem 4.2, we need only show that this
integral approaches the main term in the theorem as § tends to zero, and to
estimate the contributions of all the error terms.

ACKNOWLEDGMENTS

We would like to thank the referees for several suggestions which improved the exposition of
the paper. We also wish to thank one of the referees for comments which led to an
improvement in our original proof of Theorem 1.1.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

DISTRIBUTION OF RUNNING TIMES 555

REFERENCES

. L. M. ADLEMAN AND K. S. MCcCURLEY, Open problems in number theoretic complexity, in
“Discrete Algorithms and Complexity; Proceedings of the Japan—US Joint Seminar, June
4, 1986, Kyoto, Japan,” pp. 237-262, Academic Press, Orlando, FL, 1987.

. L. M. ApLEMAN, C. POMERANCE, AND R. S. RUMELY, On distinguishing prime numbers
from composite numbers, Ann. of Math. 117 (1983), 173-206.

. R. Avous, “An Introduction to the Analytic Theory of Numbers,” Amer. Math. Soc.,
Providence, RI, 1963.

. R. P. BRENT, Some integer factorization algorithms using elliptic curves, Austral. Comput.
Sci. Comm. 8 (1986), 149-163.

. J. BRILLHART, D. H. LEHMER, J. L. SELFRIDGE, B. TUCKERMAN, AND S. S. WAGSTAFF, JR,,
“Factorizations of »" + 1, b =2,3,5,6,7,10,11,12 up to High Powers,” Amer. Math.
Soc., Providence, RI, 1983.

. N. G. DE BRUDIN, On the number of positive integers < x and free of prime factors > y,
Nederl. Akad. Wetensch. Proc. 54 (Indag. Math. 13) (1951), 50-60.

. D. V. CHuDNOVSKY AND G. V. CHUDNOVSKY, “Sequences of Numbers Generated by
Addition in Formal Groups and New Primality and Factorization Tests,” IBM Research
Report RC 11262, IBM Thomas J. Watson Research Center, Yorktown Heights, NY,
1985.

. H. CoHEN AND A. K. LENSTRA, Implementation of a new primality test, Math. Comp. 48
(1987), 103-121.

. H. CoHEN AND H. W. LENSTRA, JR., Primality testing and Jacobi sums, Math. Comp. 42

(1984), 297-330.

K. DickMaN, On the frequency of numbers containing prime factors of a certain relative

magnitude, Ark. Mat., Astronom. Fys. 22A, No. 10 (1930), 1-14.

J. B. FRIEDLANDER AND J. C. LAGARIAS, On the distribution in short intervals of integers

having no large prime factor, J. Number Theory 25 (1987), 249-273.

S. GOLDWASSER AND J. KILIAN, Almost all primes can be quickly certified, in “Proceed-

ings, 18th ACM Symposium on Theory of Computing, 1986,” pp. 316-329.

A. HILDEBRAND, On the number of positive integers < x and free of prime factors > y,

J. Number Theory 22 (1986), 289-307.

A. HILDEBRAND AND G. TENENBAUM, On integers free of large prime factors, Trans.

Amer. Math. Soc. 296 (1986), 265-290.

A. E. INGHAM, “The Distribution of Prime Numbers,” Hafner, New York, 1971.

D. L. KNUTH, “The Art of Computer Programming, Vol. 2: Seminumerical Algorithms,”

2nd ed., Addison-Wesley, Reading, MA, 1981.

D. E. KNUTH AND L. TRABB PARDO, Analysis of a simple factorization algorithm, Theoret.

Comput. Sci. 3 (1976 /77), 321-348.

A. K. LENSTRA, Fast and rigorous factorization under the generalized Riemann hypothesis,

preprint, 1987.

H. W. LENsTRA, JR., Factoring integers with elliptic curves, Ann. Math. 126 (1987),

649-673.

P. L. MONTGOMERY, Speeding the Pollard and elliptic curve methods of factorization,

Math. Comp. 48 (1987), 243-264.

M. A. MORRISON AND J. D. BRILLHART, A method of factoring and the factorization of

F,, Math. Comp. 29 (1975), 183-205.

C. POMERANCE, Analysis and comparison of some integer factoring algorithms, in “Com-

putational Methods in Number Theory, Part I,” pp. 89-139, Math. Centr. Tract, Vol. 154,

Math. Centrum, Amsterdam, 1982.

C. POMERANCE, Fast, rigorous factorization and discrete logarithm algorithms, in “Dis-

crete Algorithms and Complexity; Proceedings of the Japan—US Joint Seminar, June 4,

556 HAFNER AND MCCURLEY

24,

25.

26.

27.

28.

1986, Kyoto, Japan,” pp. 119-143, Academic Press, Orlando, FL, 1987.

V. RamaswaMl, On the number of positive integers less than x and free of prime divisors
greater than x¢, Bull. Amer. Math. Soc. 55 (1949), 1122-1127.

H. RieseL, “Prime Numbers and Computer Methods for Factorization,” Birkhauser,
Boston, 1985.

C.-P. SCHNORR AND H. W. LENSTRA, A Monte Carlo factoring algorithm with linear
storage, Math. Comp. 43 (1984), 289-311.

M. SEYSEN, A probabilistic factorization algorithm with quadratic forms of negative
discriminant, Math. Comp. 48 (1987), 757-780.

E. C. TrrcuMarsH, “The Theory of the Riemann Zeta-function,” 2nd ed. (revised by D. R.
Heath—Brown), Oxford Univ. Press, London, 1986.

. H. C. WiLLiams, Primality testing on a computer, Ars Combin. 5 (1978), 127-185.

