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Abstract

We consider the problem of determining the probability (in a precisely
defined sense) that randomly chosen values of a multivariate polynomial
are relatively prime. Our result applies to any polynomial with integer
coeflicients. The resulting probability is given by a product over primes
and as such is determined precisely from local considerations.

Introduction

It is well known that the probability that two integers are relatively prime is
6/m2. We show below that the probability that two large integer matrices have
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relatively prime determinants is about 1/3. Besides the intrinsic interest of this
result, there is also the possible application to the running time analysis of certain
probabilistic algorithms [3] and [1].

Another interesting example of our result shows that the probability that two
random integers are relatively prime can be made very near to 1 by restricting
those integers to be generated by a very simple polynomial.

We actually prove a very general result. Let P(z1,...,z;) be a non-zero
polynomial in { variables and with integer coefficients. For k > 1 and square-

free, set
p(k) = p(k, P) = #{z € (Z/kZ)" : P(z) =0 (mod k)}.

It is easy to see that p(k) is multiplicative in k and (see below)
p(k) = O(K'~1*°). (1)

By the probability that P(z(D), P(z(®),..., P(z(), (r > 2 and fixed) be
relatively prime we mean the limit (if it exists)

1
lim — E 1,
1—00 th‘
jeD <t 12 ) | <t
ged(P(zV),...,P(z{"))=1

where |z| = max{|z;|}, z = (z1,...,2). Our result is the following.
Theorem 1 The above limit exists for every fized polynomial and is equal to
u(k)p" (k)
cp) =] (1- 52 - z k)
P

where p is the Mébius function.

Note that this value is determined precisely from the condition that the
numbers P(z(1),..., P(z(™) do not all vanish locally.
For the proof, we need a couple of lemmas.

Lemma 1 For squarefree k we have
p(k) = O(k'~1d® (k)

for some constant B > 0 depending only on the polynomial P, and where d(k) =
Edlk 1. The implied constant of course depends on P.

Note: Since d(k) = O.(k¢) for all € > 0, (1) follows from this lemma.

Proof. We have already noted that p(k) is multiplicative so it suffices to prove

p(p) < p 7,
for all primes p sufficiently large (depending on P). This was first observed by
Ore [4] in a slightly stronger form (see also [2, Chapter 6]), but we give a simple
proof below for completeness.
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Write
P(zy,...,x;)) = Ro(zy,...,z1—1) + Ri(z1,...,211)m
+ -+ Ri(z1,. .., 31T (2)

For p sufficiently large, P does not vanish identically for every choice of z
(mod p). Hence, we can assume some R,, say Ry, also has this property. For

each selection of z, ..., z;_1 mod p for which Ro(z1,...,zi—1) # 0 (mod p), we
have O(1) values of z; (mod p) which are solutions of P(zy,...,21-1,%1) = 0
{mod p). Thus
plp) <p' ™ +p 3 1.
Ro(z1,...,x1—1)=0 (mod p)
z; (mod p)

A simple induction argument then completes the proof. O

Lemma 2 Let P be as above and let A be a large positive constant. For square-
free k with t < k < t4 we have

Z 1 = O (#1/2*e), as t — oo.
fz|<t
P(z)=0 (mod k)
The implied constant depends on P and A but not on k.

Proof. We proceed by induction on the number of variables I. For I =1

Yo 1< p(k) = Oc(k) = Oc(t),
lz|<t
P(z)=0 (mod k)

by Lemma 1.
For the general case, write P(x) as in (2) and assume that Ro(z1,...,Z1-1)
is not identically zero. Now again for a selection of x1,...,%;—1, the number of

solutions in z, |z;| < ¢, of
Ro(z1,...,x1-1) + Ri(z1,...,zi—1)z1 + -+ + Rj(z1, ... ,ml_l)x{ =0 (mod k)
is easily seen to be
< min{t, k*(Ro(z1,. .., T1-1),k)}.

Hence

> 1 <. D min{t, k(Ro(z1, .. ., T1-1), k)}

[zi<t |1]<t,. |1 | <2

P(x)=0 (_mod k)
<. € Z t1/2
|z1|<t,.o|lEi-1|<t
(Ro(@1,. %1-1) k) <VE
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ey > 1

vk z|<t,.|z-1|<t
v>vt (Ro(Z1,..s@1-1),k)=v

S tl—1/2+e +t1+e z Z 1. (3)

Vlk |$1|St7---7|$l~1|St
u>\/i Rg(zl,...,xl_l)EO (mod l/)

For v < t, the last inner sum is

and so by Lemma 1 this sum is

t -1 tl—1+€

since v > V/t.
For v > t, the last inner sum in (3) may be estimated by the inductive

hypothesis and gives
O, (- 1-1/2+¢), (5)

Hence, combining the two cases (4) and (5), we can bound the last term in (3)
by

0. Ztl—l/2+e — Oe(tl—1/2+ed(k)) — Oe(tl_1/2+€).
v|k

This proves Lemma 2. O

We now turn to the proof of the Theorem. We take r = 2, as the general
case is similar. From the defining property of u we have

S o > (5 )

|z|<t, |y|<t |=|<t, lyl<t  \k|(P(z),P(y))
(P(z),P(y))=1 P(z)*+P(y)*#0
I
1<k<t4 P(z)=0 (mod k)
P(y)=0 (mod k)
P(z)?+P(y)>#0
S CI (D >IN T S HC
1<k<tA P(z)=0 (mod k) P(z)=0
P(y)=0 (mod k) P(y)=0
lz|<t, fy|<t lz|<t, |y|<t

where A > deg P (and t is large).
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We split the k sum in (6) as S; + S2 where S; corresponds to the range

1 <k <t and S; corresponds to the rest.
Now clearly,

S = Y, ,u(k)( > 1) + 0871

P(z)=0 (mod k)
=<t

ISsttu(k) [{ (%)l +0 (%)"1} » 2

Using Lemma 1 in what follows, we get

+ 0% 1),

2
S, = ¥ Z N(k’)cgl(k) + O(t3 1)

1<k<t
= t2Cy(P) + O(t¥ 1), (7)

For S; we have

A I U >N [ IR E o

t<k<t4 P(z)=0 (mod k) P(y)=0 (mod k) P(y)=0
lz|<t lui<t lyl<t
P(z)#0

< > (z )( »
t<k<td P(z)=0 (mod k) P(y)=0 (mod k)

k square-free |z <t lyl<t

P(x)#0

By Lemma 2, we have that the last expression in parentheses is Oe(t’_l/ 2te),

hence
52 <. tl—1/2+s Z Z 1

t<k<tA P(z)=0 (mod k)
|z|<t
P(z)#0

f—1/2+e Z Z

|lz|<t m, k
P(z)#0 mk=P(z)

= 4 Y d(P@)

| <t
P(x)#0

IN

<. tl—l/2+etl+e <. t2l—1/2+e_ (8)
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The key to this last estimate is the second step where we reverse the order of
summation again, putting the sum on z as the outer sum. In this way we can
exploit the fact that though the k’s can get rather large, the number of such k
is small (a divisor function).

The estimates of (7) and (8) prove the Theorem.

Some Examples

In the case that P(z) is the determinant of an n x n matrix, one can easily
compute p(p). We find that

Ca(dety) =[{1- (1 - ﬁ(l —p‘”))

P v=1

Thus 6
Cz(detl) = ;5 > Cz(detz) > > C2(detn) — Cz(OO),

where

Ca(o0) = [ 41 (1-H<1-p—v>)

P v=1

Vardi [5] has developed a method to compute such products over primes effi-
ciently and finds that
C’z(oo) =0.353....

Another interesting example hinted at in the introductory paragraphs is the
polynomial
P(z) = 2% + z +41.

Then Cy(P) > 0.986 which is very large for a polynomial of such small de-
gree and with such small coefficients. The polynomial Q(z) = z'2 + 4094 has
an exceptionally small value (without being zero) for this probability, namely,
C2(Q) < 0.00552. It would be an interesting problem to find other examples
with small degree and coefficients, perhaps multivariate, where this probability
is extremal.

Note Added in the Proof

After this paper was submitted and accepted, we learned of a new (unpublished)
technique due to Michael Rosen that may apply to this problem and yield a very
simple proof of the main result. It is based on the observation that the rational
integers are uniformly distributed in the topological group ]_[p Zy, the product
of the p-adic integers over all finite primes, and on Weyl’s criterion for uniform
distribution. Since the details of this method and how it might apply to this
problem have not all been worked out, we leave this as a simple note at this
time.
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