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Odds and Ends from Cryptology and
Computational Number Theory

KEVIN S. McCURLEY

ABSTRACT. Because of the enormous publicity that factoring and the RSA
cryptosystem have enjoyed, the casual observer may come to believe that ap-
plications of number theory to cryptology will disappear if factoring is some-
day discovered to be easy. In fact, the role of number theory in complexity-
based cryptology extends far beyond just the difficulty of factoring. Other
papers in this collection have already discussed the roles of the discrete log-
arithm problem and the subset sum (knapsack) problem in cryptology. The
main purpose of this paper is to describe some of the many other applica-
tions of number theory in cryptology.

1. Introduction

The heart of applications of number theory to cryptology lies in the inher-
ent difficulty of computational problems. In some cases, the intractability of a
computational problem provides a basis for security in a cryptosystem. Some
notable examples of such problems are factoring (discussed in the paper by
Pomerance), the knapsack problem (discussed in the paper by Odlyzko), and
the discrete logarithm problem (discussed in a separate paper by the author).
While these are probably the best known of the problems that have been used
as the basis of security for cryptosystems (and possibly the most important),
they are by no means the only ones. One of the goals of this paper is to
describe some of the other problems that have been used in this manner.
In doing so, we shall also present some of the cryptosystems that make use
of the problems. The main emphasis of the paper is on the computational
problems involved, but it is the view of the author that an understanding of
the cryptographic applications will be helpful in fully appreciating the com-
putational problem. Part of the motivation for presenting these is to suggest
research topics for the interested reader.

There also exist problems in computational number theory for which the
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discovery of efficient algorithms has resulted in cryptologic applications. A
notable example here is that of compositeness testing (discussed in a separate
paper by Lenstra on primality testing), which is important for the construc-
tion of keys to be used in various cryptographic schemes. The second goal
of this paper is to describe some other efficient algorithms that have proved
useful in cryptologic applications.

In this paper I have confined myself to subjects that arise in cryptographic
applications, but their interest is by no means limited to this arena. Compu-
tational number theory has found applications in many other areas of science
and mathematics, including but not limited to Fourier analysis in commu-
nication (see [43]), pseudorandom number generation (see [36]), numerical
analysis (see [34]), and coding theory (see [6]). The field of computational
number theory experienced a resurgence of interest after the discovery in
the mid 1970s of cryptographic applications, but we should also not forget
the fact that computational number theory has interested mathematicians
for centuries. Part of this interest can no doubt be traced to the fact that
arithmetic occupies such a central role in mathematics.

For the reader interested in learning more about other aspects of computa-
tional number theory, there are several good general references. Two partic-
ularly good sources for information on number theoretic algorithms are the
paper of Bach [4] and the book of Knuth [35, Chapter 4]. In addition, the
survey [2] by L. M. Adleman and the author is devoted to complexity aspects
of number theory and contains a list of open problems in the area.

2. Linear Algebra Algorithms in Cryptology

Just as in all other areas of applied mathematics, linear algebra plays a
prominent role in the applications of number theory to cryptology. We have
already seen some examples of this. First, fast integer factoring algorithms
often require the solution of large sparse systems of linear equations over the
finite field GF(2). Second, the fastest known discrete logarithm algorithms in
finite fields require the solution of a large sparse system of linear congruences.
Third, the algorithms for breaking the encryption schemes based on the subset
sum problem involve algorithms for finding short vectors in lattices (otherwise
known as finitely generated free modules over Z). Yet another example of
a linear algebra algorithm that arises in cryptology is the Berlekamp-Massey
algorithm, which can be used to compute the minimal polynomial of a linear
recurrent sequence over a finite field. In this section we shall discuss some
of these applications.

In addition to the major applications that I mentioned above, there have
been a few other situations in which linear algebra algorithms have come up
in cryptology. In particular, the problems of solving systems of linear con-
gruences and systems of linear diophantine equations can be used to predict
the outcome of certain pseudorandom number generators [37], and in the
cryptanalysis of certain applications of RSA to electronic monetary systems
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[26]. We shall not discuss these applications further here, but we mention in
passing that recent progress has been made [33] on algorithms for solving the
underlying computational problems.

2.1. Sparse linear systems over finite fields. Because of the importance of
solving sparse linear systems over finite fields to factoring and discrete loga-
rithm algorithms, we shall now describe the state of knowledge in the field.
There is a large body of research on the subject of algorithms for solving
sparse linear systems over the field of real numbers. Such methods generally
fall into two categories: direct methods such as Gaussian elimination that
follow a set procedure to arrive at the answer, and indirect or iterative meth-
ods that produce a sequence of vectors that hopefully converge to the correct
answer. Direct methods can generally be described in terms of arithmetic
over an arbitrary field, and so can be applied directly to solving systems over
finite fields. Optimized variations of Gaussian elimination that minimize
fill-in of linear systems over GF(2) have been employed with great success
in the implementation of algorithms for factoring (see [47], [38] for more
information on the subject).

Because there is no notion of convergence in finite fields, it may at first
sight appear that iterative methods for approximating the solutions of linear
systems over the field of real numbers have no direct analogue for solving
systems over finite fields. In fact, several of the classical algorithms that are
usually viewed as iterative do have analogues for solving systems over finite
fields. Prime examples are the conjugate gradient method and the Lanczos
method. These algorithms have the property that their behavior can be de-
scribed in terms of orthogonality, and if exact arithmetic is used then they
will produce the exact answer after a finite number of steps. They are usu-
ally characterized as iterative methods because that is the way they are often
used in practice. Experience indicates that when the methods are applied
to systems over the real numbers, the sequence of vectors produced often
comes very close to the exact answer long before the algorithm is guaranteed
to terminate. For more information on the application of the Lanczos and
conjugate gradient methods to finite fields, the reader may consult [38] or
[17].

2.2. Wiedemann’s coordinate recurrence method. In addition to the Gaus-
sian elimination and the Lanczos and conjugate gradient methods for solving
linear systems, another alternative was proposed by Wiedemann [62] (this
method is in fact closely related to a method of A. N. Krylov; (see [27, §21]).
For simplicity, we shall consider only the case of solving a system of the
form Ax = b, where A4 is an n x n nonsingular matrix over GF (¢) (the
nonsquare and nonfull-rank cases are treated in [62]). Let f(x) = Zf:o a,.x'

be the minimal polynomial of 4, with a, = 1. Since f(A4) =0, it follows
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that

k .
(2.1) A(—ZaiA'—lb) =b,
i=1

so that if we know [, the solution to Ax = b can be calculated as

k .
X =- ZaiA'_lb.
i1

This calculation can be carried out rather easily if 4 is a sparse matrix, since
the most difficult part of the calculation involves repeatedly multiplying a
vector by the matrix 4. If 4 has @ nonzero entries, then the calculation
of A’b from A’~'b involves O(n + w) arithmetic operations, so that the
accumulation of the answer given by (2.1) requires O(n(n + w)) arithmetic
operations in all. The storage requirements to calculate the sum in (2.1) are
also quite modest, since we require storage for only three vectors of length
n, namely one to store the coefficients of f, one to store the intermediate
value 4’b, and one to accumulate the answer.

2.3. The Berlekamp-Massey algorithm. In the Wiedemann method, a nec-
essary ingredient is the calculation of the minimal polynomial f of the
matrix A, and the method that Wiedemann suggested for doing this is an
adaptation of a method discovered by Berlekamp [6] and Massey [41]. Let
Sg>S8;>---5 5, , bea sequence of elements from a finite field GF (¢). The
Berlekamp-Massey algorithm determines the coefficients of the linear recur-

rence of shortest length that generates the sequence s. More precisely, it

determines from input s, ..., §,_, the minimal integer L = L, and ele-
ments a,, ..., a; such that

L
(2.2) s;==Y_as;_;, L<j<n-—L.

i=1

The Berlekamp-Massey algorithm has several applications, but was origi-
nally developed for the decoding of BCH codes. Another application of the
Berlekamp-Massey algorithm that we shall now discuss is to the cryptanalysis
of certain stream cyphers that are motivated by the one-time pad (also known
as a Vernam cypher). Shannon [59] proved a result that may be interpreted
to say that in an attack on a one-time pad in which only cyphertext is avail-
able, the cryptanalyst would be unable to distinguish the true plaintext from
any other plaintext of the same length (even if the cryptanalyst has unlimited
computing power). The main disadvantage of such a scheme is that the key
must be essentially as long as the message, and for this reason several people
have suggested using a pseudorandom sequence as a substitute for the truly
random sequence. One type of pseudorandom generator that has been sug-
gested for this purpose is that of a feedback shift register, which is a form of
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electronic switching circuit. Feedback shift registers can be used to very effi-
ciently expand a short random sequence into a much longer pseudorandom
sequence, and in particular /inear feedback shift registers produce sequences
according to linear recurrence relations.

One desirable property of a pseudorandom sequence that is to be used
to replace a random sequence in a one-time pad is that the period of the
sequence should be very long. From this standpoint, sequences generated by
linear feedback shift registers are rather good, since there is a good chance
that a sequence over GF (g) that is generated by a recurrence of order L will
have a minimal period of length qL —1 (see [39, §8.1] for more details).

Another desirable property of a pseudorandom sequence is that the next
term in a sequence should not be easily predictable from previous terms in
the sequence (further information on desirable properties of pseudorandom
generators can be found in the paper by Lagarias). Unfortunately, random
sequences that are produced by linear feedback shift registers of length L can
be predicted rather easily by the Berlekamp-Massey algorithm from knowl-
edge of the first 2L terms of the sequence (details are given later in this
paper). For this reason, they are therefore very weak for this cryptographic
application. Proposals such as in [23], which use a linear feedback shift reg-
ister, must therefore be regarded as insecure against an attack in which the
cryptanalyst is in possession of a small amount of matching cleartext and
cyphertext.

Because of this weakness, interest in sequences has shifted (no pun in-
tended!) to the use of nonlinear feedback shift registers, or nonlinear com-
binations of linear feedback shift registers. Various studies have been con-
ducted on such sequences, from the point of view of correlation properties
and the so-called linear complexity profile. These developments are beyond
the scope of this paper, but good sources of information about these topics
are provided by Rueppel [55] and recent proceedings of the Eurocrypt and
Crypto Conferences.

Before we describe Wiedemann’s application to solving systems of sparse
linear systems, we first give a general description of the Berlekamp-Massey
algorithm, using the approach of Massey. The problem is to determine the
coefficients g, as in (2.2), or equivalently to determine the generating poly-
nomial C(x) =1+ E{;l aixi of the sequence. It can be shown (see [39,
§8.6]) that if we have 2L terms of the sequence s, then we can compute the
required coefficients by solving the linear system

S s S, e Sp a, =5

8, S, 5 1 a,_, 811
(2.3) 5 53 S s S = :

Sp1 S Spyr -ee Spad | a —Sar_1

We could of course simply solve the system using Gaussian elimination, but
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this would take approximately L} /3 operations. The Berlekamp-Massey al-
gorithm makes use of the special structure of the system to devise an al-
gorithm with a running time of only O(Lz) operations, with a small O-
constant.

The algorithm proceeds inductively on 7, deriving the linear recurrence
of least order that will produce the sequence s, ..., s,_, . Beginning with
n =1, we take C(l)(x) =1 and L, = 0. Assume now that we know the
generating polynomial

L'l
(n) _ (n) _Jj
(2.4) CP(x)=1+) a"x
j=1
of degree L, for the recurrence that will produce the sequence S5 -ee s Spq>
and we want to determine the polynomial C(”“)(x) of degreee L, , that
will determine sy, ..., s, . We first compute the discrepancy
Lll
(n)
(2.5) d,=s,+> as,_.
j=1

If d, =0, then we simply take L, = L, and C""V(x) = C"(x). Other-
wise we take m to be the largest value for which d, # 0 and m < n (take
d, =1 to get it started), and compute

(2.6) c"Vx)=c"x)-d d;'x""C™(x),

and L, , = max(L,,n+1—L,). It can be proved (by induction) that
the resulting generating polynomial corresponds to the linear recurrence of
least order that generates the required sequence. Moreover, it can also be
proved rather easily that the resulting algorithm uses only O(nz) field oper-
ations to compute the recurrence that generates the first # elements of the
sequence. A more careful analysis of the performance of the algorithm is
given in [31]. Further refinements on the algorithm can also be found in [7,
§11.6 and §11.7), where a variant is described that uses only O(n(log n)”e)
field operations.

It is interesting to note that the Berlekamp-Massey algorithm is closely
related to the problem of calculating what are known as Padé approxima-
tions. It is well known (see [39, Theorem 8.40]) that the sequence s; sat-
isfies a kth order linear recurrence if and only if the generating function
f(x) =32,sx" is a rational function whose denominator is a polynomial
of degree at most k. In the nth iteration of the Berlekamp-Massey algo-
rithm, we are therefore actually calculating the denominator of a rational
function whose MacLaurin series coefficients are given by the first # terms
of the sequence. The Padé table of approximations to a function f(x) con-
sists of a rectangular array of rational functions R whose numerator has

mn
degree m and denominator degree n, and whose MacLaurin series agrees
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with that of f in the first m + n+ 1 terms. The sequence of polynomials
generated in the Berlekamp-Massey algorithm appears in the denominators
of certain entries in the Padé table. Methods for calculating the entries in
the Padé table can be traced to the work of Frobenius [28] in 1881, where
he derived recurrence relations for the numerators and denominators. The
Berlekamp-Massey algorithm adapts the method of Frobenius to account for
the fact that certain entries in the Padé table are not defined (see [5, Chapter
4] for further details).

We now return to Wiedemann’s application of the Berlekamp-Massey al-
gorithm to the problem of computing the minimal polynomial of a matrix.
Suppose that we want to find the m1n1mal polynomial of the n x n matrix 4
of rank n. Let f(x)= Ek a.x*"" be the minimal polynomial of A, with

i=0""i
a, = 1. The key observation here is that if we form a sequence of vectors by

choosing a random x'” and computing x (m+) _ 4% then they satisfy a

linear recurrent sequence

(27) x(]) - _ Zaix(j—l) ,
i=1

so that the individual coordinate sequences xfj ) satisfy the linear recurrence
as well. It follows from the theory of linear recurrent sequences (see [39,
Chapter 4]) that the minimal polynomial f; of the ith coordinate sequence

(0) Y eens (" ' is a divisor of f. If we compute several different f,, then
there is a good chance of recovering f from the least common multiple of
the f;’s. In order to make the argument rigorous, we form truly random
sequences from the coordmate sequences by choosing a random vector u,
and forming s, = u Tx® 1t is then possible to prove that the least common
multiple of the minimal polynomials arising from a few choices for u will
equal f with high probability. Various efficiency improvements can be made
as well, but for these details we refer the interested reader to [62].

Although there are no apparent applications to cryptology, Wiedemann’s
paper raised several interesting open questions in computational number the-
ory. The first of these is whether there exists a fast algorithm to find the
inverse of a sparse matrix (i.e., in 0( **) operations). Note that there ex-
ist algorithms to compute the inverse of and arbitrary matrix over a field in
O(n2 376) field operations [18], and it has even been conjectured that 0(n2+£)
should be possible for arbitrary matrices. Another interesting question is
whether it is possible to remove the nondeterminism from Wiedemann’s al-
gorithm. Wiedemann suggested a method for doing this, but it requires O(n )
space. Third, there is the question of whether there exists a fast algorithm
to compute the characteristic polynomial of a sparse matrix. Finally, there
is the question of whether Wiedemann’s methods can be made competitive
with other techniques in practice (see [38]). At present we have rather little
practical experience with many of these algorithms.
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3. Multivariate Polynomial Congruences Modulo a Composite

In 1984, Ong, Schnorr, and Shamir [49] proposed the first in a series of
very efficient digital signature schemes based on the difficulty of solving a
polynomial congruence modulo a composite integer. Their original scheme
was the following. A trusted authority chooses an odd integer n = pq that
is presumed hard to factor and publishes the number n (alternatively, each
user could choose their own modulus 7). Each user who wants to be able
to sign messages will choose a random integer s, compute k = sz(mod ny,
and submit k to the trusted authority. The trusted authority then publishes
a book containing all of the public keys k& of users. The user who wishes
to sign a message m will then produce a solution x,y to the congruence
x2— ky2 = m(mod n) . Anyone can easily verify the validity of the signature.
Moreover, the user who holds the secret key s can easily produce a solu-
tion by first choosing a random integer » and then applying the extended
Euclidean algorithm to calculate

x=2""mr " + r)(modn),

y=2s) (mr ' - r) (mod n).

The security of the scheme depends on a forger’s apparent inability to find
a solution to the congruence x? - ky2 =m(modn) when k, m, and n are
given, but s is kept secret. Shortly after this scheme was announced, how-
ever, it fell victim to the discovery by Pollard of a very efficient method for
solving the congruence, and hence also a method to forge messages. Pollard
and Schnorr [51] later proved that the congruence could be solved in random
polynomial time assuming the extended Riemann hypothesis. This result was
later improved by Adleman, Estes, and the author [1], who modified the algo-
rithm in such a way as to eliminate the assumption of the extended Riemann
hypothesis.

The basic idea of Pollard’s is quite elegant and uses some elementary theory
of binary quadratic forms. Moreover, it holds a valuable lesson for those who
tend to believe that a computational problem is difficult just because the only
apparent solution is difficult. Before describing his main idea, we need to
make a few auxiliary observations.

Consider first the problem of finding a prime p in a given arithmetic pro-
gression m modulo n. One easy method for doing this is to simply guess a
random integer r = m (mod n) with r < n®, and test it for primality using
one of the very efficient methods described in the accompanying paper by
A. K. Lenstra on primality testing. According to the prime number theo-
rem for arithmetic progressions (see [20]), if ged(m, n) = 1, the probability
that an r chosen randomly in this manner will be prime is approximately
n/(3p(n)logn), and this statement can be made rigorous under the assump-
tion of the extended Riemann hypothesis. Hence we should expect to find
such a prime after examining at most O(logn) integers.
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Next consider the problem of representing a prime p = 1 (mod4) as a
sum of two squares. An efficient algorithm for this problem dates back to
the time of Hermite, and was refined and analyzed further by Brillhart [12].
The basic idea of the algorithm is first to use one of the efficient randomized
algorithms described in [36, §4.6.2] to find a solution to u° = —1 (modp).
From this, an algorithm that is very similar to the Euclidean algorithm will
produce the desired representation of p as a sum of two squares.

From the previous observatlon it is now easy to describe a method for
solving the congruences x2+ y = m (modn). First, note that a solution
to x? — y =m (modn) can be constructed trivially by solving the linear
system x—y=m (modn) and x+y =1 (modn). The case x? -l—y2 =m
(modn) is somewhat more instructive. For this case we begin by using the
procedure described above to construct a prime p satisfying p m (modn)
and p =1 (mod 4) . We then represent p in the form x° + y . Notice now
that x? +y =p=m (modn), so we are done.

Pollard’s key idea for solving the congruence x? - ky2 =m (modn) is
to reduce it to solving a congruence of the same form, but with k replaced
by some k; with |k,| < \/4]k[/3 (and a new m ). After a small number of
such reductron steps we eventually reach the case of solving a congruence of
the form x* + V=m (mod n), for which we have already noted that it is
easy to find a solution.

The method of reduction mimics the process described previously for deal-
ing with the case k = —1. We first find a prime p = m (mod n) for which
(k/p) = 1. Note that of the primes p = m (mod n), approximately 1 5 will
have the additional property that (k/p) = 1, so that we should expect to find
one rather quickly. Once this is done, we next find a solution of the congru-
ence u’ =k (modp). If we were to follow the procedure used previously
for the case k = —1, then we would next find a representation of p in the
form x2 — ky The theory of blnary quadratic forms tells us that p will be
represented by the form x2 — ky if and only if this form is equivalent to
the form px +2uxy +v y , where u® =k + pv . Unfortunately, there is no
reason we should expect thlS to be the case when k is large, since the class
number /(4k) may be large.

While the prime p itself need not be representable by the form x2_ ky ,
it is elementary to prove that a small multiple of p can be so represented,
and moreover there is a simple algorithm to produce such a multiple. We
construct sequences by taking u, = u, q, = (u2 —k)/p,and for i > 1, we
take

- 2
u,=u;_,(modg,), |u;| minimal, 9y = (u; —k)/q,.

l H

It is easily proved that the |g,| s are decreasing until eventually lg;| < /4lk|/3
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for some i = O(log |k|). We then have
i1
2 2
(3.1) [1 - k) = (pa)(a,4,) - (4;_,4,) = PE 4,
j=0
for some integer ¢. From the identity

(3.2) (2 — ky?)(2% — kw?) = (xz + kyw)” — k(xw + yz)’

(which is a trivial case of composition of forms), we obtain from (3.1) that
there exist integers a and b such that at — kb = ptqu. , so that

(3.3) (at™Y? = k(bt™")* = mq, (mod n).

Now observe that if we can solve x* - ky2 = ¢,(modn), then we can use
(3.3) and (3.2) to solve the original equation x? - ky2 = m(modn). Hence
we have reduced to the problem of solving Xt — ky2 = ¢,(modn), but we
can further reduce this to solving x2 - ql.y2 = k (modn), so we effectively
reduced the original problem to one where k is replaced by the value g¢;
with |g,| < \/4k[/3. By repeating this procedure O(loglogn) times, we
eventually arrive at the problem of solving a congruence of the form x’+ y2 =
m (modn).

3.1. Modifications and extensions. After the original scheme of Ong,
Schnorr, and Shamir was broken by Pollard’s method, a modification was
proposed based on higher-degree congruences [50]. One concrete proposal
had its security based on the presumed difficulty of solving for x,y,z in
the quadric congruence

(m, — 2kxy)2 + 422(dx2 + k(y2 + dzz) —m,) =0(modn),

when m,, m,, d, k,and n are given. This scheme was later broken in
[25], using methods that are similar to Pollard’s original idea. Yet another
scheme based on a cubic equation was also proposed, but even that scheme
has had doubt cast upon it in [51]. It remains an interesting open question
to determine what types of polynomial congruences with composite mod-
uli can be solved in random polynomial time. It is also an open question
whether an efficient signature scheme can be constructed along these lines
(although the previous experience will likely make people suspicious of any
such proposal!).

4. The ElGamal Schemes
In 1985, ElGamal [24] proposed two interesting cryptographic schemes.

The first of these was a public-key cryptosystem whose security is based on
the difficulty of the Diffie-Hellman problem (for more on this, see the paper
on the discrete logarithm problem). The other scheme was a digital signature
scheme that we shall now describe. We assume that there is a public directory
of keys used to validate signatures, and that a prime p and primitive root
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g modulo p are publicly known. Suppose a user wishes to be able to sign
messages, and assume that the message can be thought of as an integer m
satisfying 0 < m < p — 1. The user then chooses a secret key s, computes
k = g’ (modp), and lists k in the directory as his public key. In order to
sign a message m, the user will produce a solution x, y to the congruence
k*x’ = g" (modp). Clearly, if such a signature is available, then anyone
can verify it with little difficulty. Moreover, the user can easily compute such
a solution by first choosing a random integer » with ged(r,p—1) = 1,
computing x = g’ (modp), and computing y from sx + ry = m (modp —
1) by the extended Euclidean algorithm. Note then that k*x” = g™ =
g" (modp).

The security of the ElGamal scheme is based on the presumed difficulty
of solving the bivariate congruence k*x” = g"” (modp) without knowledge
of s. The problem of finding s is known as the discrete logarithm problem
and is generally thought to be hard. In addition, if one fixes x, then the
problem of finding y is again equivalent to the discrete logarithm problem.
If we fix y, then the problem of solving for x is a crazy mixed exponential
congruence for which nobody has any idea how to solve efficiently.

All of this looks very similar to the situation described for the schemes of
§3 that were based on the difficulty of solving xt- ky2 = m(modn). In that
case, recovering the key required the ability to factor », and fixing either x
or y and solving for the other was also known to require the ability to factor
n. On the other hand, the bivariate problem turned out to be rather easy to
solve, by a method that had little to do with factoring. It is an interesting
open problem to see whether the same is true for the ElGamal signature
congruence, namely whether it can be solved by a more efficient method than
just computation of discrete logarithms.

5. Back to the Beginning: RSA

Very soon after the notion of a public-key cryptosystem was proposed by
Diffie and Hellman [22], two such systems were proposed. One of these was
the Merkle-Hellman system based on the subset sum problem (discussed in
the accompanying paper by Odlyzko), and the other was the RSA scheme [54],
named after its inventors Rivest, Shamir, and Adleman. In casual treatments
of the RSA system, it is often stated that the security of the scheme depends
on our inability to factor large integers, but this is in fact an exaggeration.
In order to say that a system is completely secure, we need to show that it
is safe against any possible attack. In the case of RSA, there are at least two
attacks that we can consider. The first attack that a cryptanalyst might try
is to recover the secret decryption exponent, so that he can then decrypt all
past and future messages. For this attack it is known that success will require
us to factor n. First note that if n = pg is a product of two primes, as in
the RSA cryptosystem, then knowledge of ¢(n) provides the factors p and



156 KEVIN S. McCURLEY

q , since they satisfy

pqg=n, p+g=n+1-o9(n).

Moreover, if only # and e, d < n are known, then this provides a multiple
ed — 1 of ¢(n). For this case, Long ([40], but see also [64]) proved that this
information provides a random polynomial-time algorithm that will produce
the factors of »n. By this we mean that there exists an algorithm that makes
use of a random number generator, and whose running time is a random
variable with expected value that is O(log® n) for some constant c.

Another possible attack involves an attempt at decryption of a particular
message. In this case, the problem that is required to be solved is to find
an integer m such that m® = c(modn) when e, ¢, and n are given. For
randomly chosen ¢ and ged(e, ¢(n)) = 1 (as in the case in the original RSA
scheme), this problem may in fact be much easier than factoring the modulus
since there is no proof that the ability to factor »n is required.

In contrast, for gcd(e, ¢(n)) > 1, it can be shown that solving the congru-
ence for randomly chosen ¢ requires the ability to factor n. For example,
suppose we have an algorithm that for arbitrary integers a will return an
integer x such that x? = a(modn) (provided such an x exists). In this
case, we can select a random integer r, compute g = r (mod n), and ask our
algorithm for a solution x to xt=a (mod n). Since the algorithm cannot
know ahead of time which solution was originally used to produce a, it is
easy to see that there is at least a 50% chance that gcd(r + x, n) will be a
nontrivial factor of n.

The fact that the problem of solving m® = ¢(modn) for arbitrary c is
equivalent to factoring n when ged(e, ¢(n)) > 1 suggests the possibility of
using such an exponent in RSA encryption. One complication arises from the
fact that the encryption function is no longer an automorphism of (Z/ nzZ)*,
so that decryption of messages no longer gives a unique value. This problem
can be overcome, and a method for doing so is described in [63]. On the
other hand, the proof given above that solving =c (mod n) is equivalent
to factoring points out another possible difficulty, namely the vulnerability
of such a scheme to a so-called “chosen cyphertext attack.” By this we mean
that the user needs to be careful that he does not allow anyone to gain the de-
cryptions of cyphertexts of their own choosing. To my knowledge, no one has
yet designed an encryption scheme whose security is equivalent to factoring
but is secure against such an attack. On the other hand, the corresponding
problem for digital signature schemes was solved theoretically in [30], and the
search continues for efficient cryptographic schemes that are secure against
various kinds of attacks under reasonable complexity assumptions (such as
the intractability of factoring). For further developments along these lines,
the reader may wish to consult [46].

An interesting topic related to the RSA encryption function is the study of
the security of individual bits of the cyphertext. In practical cryptography, it
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is generally not enough to say that recovering the entire message is impossible,
and what we would really like to know is that predicting any part of the
message with better-than-expected probability is impossible. This provides a
powerful motivation for studying the security of individual bits of cyphertext.
During the early and middle 1980s there were several papers dealing with this
subject, culminating with the paper of Alexi, Chor, Goldreich, and Schnorr
[3], where they proved that if there was an efficient method for predicting the
least significant bits of an RSA encrypted message with probability at least
0.5 + &, then this algorithm could be used to efficiently determine the entire
message.

Several other cryptosystems have been proposed with the property that
breaking them is thought to be hard for essentially the same reason that we
think inverting the RSA function is hard, namely, the only method that we
know for solving the problem of interest requires us to first solve some other
problem such as factoring. The intractability of factoring may in fact turn out
to have nothing whatsoever to do with breaking RSA, since we may discover a
very efficient algorithm for solving the congruence. Recall that an analogous
situation has already occurred with the systems described in §3.

6. The Quadratic Residuosity Problem

Recall that an integer a is a quadratic residue modulo » if ged(a, n) =
1 and there exists a solution x to the congruence xt = a(modn). The
quadratic residuosity problem can be stated simply as the following: Given
integers a and n, decide if a is a quadratic residue modulo #». In our
discussion of this problem, we shall distinguish between two cases, depending
on whether n is composite.

If p is a prime, then there are at least two very efficient methods for
deciding if a is a quadratic residue modulo p. The first method can be
traced back to Euler, who proved that if p is an odd prime, then

(6.1) a""" = () (modp),

where (+) is the Legendre symbol, defined as

1, if a is a quadratic residue (modp),
( ;’—]) =4 —1, if a is a quadratic nonresidue (mod p),
0, if pla.

Clearly we can use (6.1) with the very efficient binary method of exponenti-
ation to solve the problem of quadratic residuosity modulo a prime. Using
standard algorithms for arithmetic, this will require 0(log3 D) bit operations.

A more efficient alternative is provided by the law of quadratic reciprocity.
In order to state this, we first recall the definition of the Jacobi symbol, which
extends the definition of the Lengendre symbol. If n is odd with prime
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factorization n = Hf;l p;’, then the Jacobi symbol is defined by

i=1
The law of quadratic reciprocity states that for odd a and n,
(@) { —(ameda)  if g = n = 3(mod4),
Z =

(ameda)  otherwise.

We now need to deal with the case that a is even. If a = 2°a with a odd, we
use the fact that the Legendre symbol is a multiplicative function to obtain
(=7 (3)-

Combining this with the result of Gauss that
(2)_{1 if n =41 (mod8),
" -1 if n==%3(mod8),
we have a complete method for evaluating the Legendre symbol (a/n). As

an example, consider the problem of calculating (%) . In this case we have

1243) _ _( 180 )

1423/ — 1243
= —(149)" (+%3)
=-(#)
~(2)(%)
=-(3)

Clearly this algorithm is closely related to the Euclidean algorithm, and it can
be shown that the running time is 0(log2 p) bit operations. For a thorough
analysis of algorithms for computing the Jacobi symbol, see [56].

Suppose now that » is odd and composite. In this case, we know that
a is a quadratic residue modulo » if and only if it is a quadratic residue
modulo every prime dividing n. Clearly, if (a/n) = -1, then (a/p,) = -1
for some i, and a is a quadratic nonresidue modulo n. On the other
hand, it is clearly possible that a might be a quadratic nonresidue modulo
n even though (a/n) = 1. This is precisely the case that is regarded by some
as intractable, since the only method we know for determining quadratic
residuosity in this case requires that we first factor ».

Because of our inability to solve the quadratic residuosity problem without
factoring, several researchers have proposed cryptosystems whose security is
based on the difficulty of determining quadratic residuosity (see for example
[8], [29], and [46]). Whether it is in fact intractable (or at least equivalent to
factoring in some sense) remains a very interesting question.
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One peculiar connection is known to exist between this problem and the
problem of determining the number of prime factors of an integer. The
connection lies in the fact that if an integer »n is odd and has k distinct
prime factors, then the number of quadratic residues modulo #n is Z_k(p(n) .
Suppose now that we knew of an algorithm for determining whether a is a
quadratic residue modulo n. We could then determine the value of k with
very high probability by simply choosing random residues modulo 7, seeing
whether they are quadratic residues, and from this derive an estimate of the
fraction that are quadratic residues.

77. Identity-based Cryptosystems

One fundamental problem in cryptology is that of identification, namely
guaranteeing that the person with whom you are communicating is indeed
who you think they are. In 1984, Shamir [57] proposed a novel approach
to overcome this problem, which he referred to as “identity-based cryptosys-
tems.” In his original paper, he discussed the general notion of an identity-
based scheme, and he also proposed a concrete implementation of a signature
scheme using this approach. Since then, several identity-based schemes based
on number-theoretic problems have been proposed in the open literature, for
encryption, key distribution, and digital signatures. In this section we shall
present one example from among these, namely the identity-based key dis-
tribution scheme of Okamoto and Tanaka [48).

We first give the motivation for devising such a scheme. In a large net-
work, the problem of managing keys for communication between any two
parties can be a daunting task. If each user has to keep keys for each user
he communicates with, then the amount of memory can be prohibitive, and
this precludes communication with someone for whom a key is not available.
If a key distribution center is used, then there will be a significant increase
in the level of communication due to the fact that users must then connect
to the center before they communicate with anyone else. To overcome these
problems, several approaches have been suggested in the literature, including
the notion of an identity-based key-distribution scheme. In such a scheme,
each user uses his or her personal identification information (such as name
and address) as his or her public key. This enables people to avoid the prob-
lem of storing and maintaining large lists of public keys, and also eliminates
the need for an authenticated list of keys or addresses.

There are several different schemes described in [48], but we shall present
only the most basic one. The scheme requires a key-issuing authority whose
only role is to produce legitimate keys for the future users. When the key-
issuing center is set up, it chooses an RSA modulus n = pg, RSA exponents
d and e with ed = 1 (mod¢(n)), and in addition, an integer g that is a
primitive root modulo both p and ¢g. The parameters e, n, and g are
made public, but 4, p, and g are kept secret by the center. For a user j
whose identification information is 1 B the center uses the secret key d to
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compute §; = Ij_d (modn), and this is provided to the user as their secret
key.

When users / and j wish to agree on a common authenticated key,
user [ chooses a random integer r; with 0 < r, < n and computes x;, =
s g (mod n), and sends the result to user j. Similarly, user j chooses a ran-
dom integer r;,computes X; =5, g’ (mod n), and sends the result to user 1.
Both users can now compute a common key K = g°/ (mod ), which user
i computes as (x;1;)" (modn), and user j computes as (x;/;)” (modn).

The question now arises: what computational problem does a cheater have
to solve in order to defeat the scheme? One possible attack involves an
eavesdropper constructing the secret key after having heard the conversa-
tion between the two legitmate users. In order to do this, he must compute
g (modn) from n, e, g, I,, I;, x; and x;. One approach to doing so
is to compute ¢ = I.x{ (modn) and g7 = I,x; (mod n), and from these
compute g°"/ (modn). This problen is known as the Diffie-Hellman prob-
lem, and is widely thought to be hard (see the accompanying paper on the
discrete logarithm problem for more information). Another approach would
be to start by computing the secret keys s, and 55 but this is equivalent
to inverting the RSA function. Moreover, even if we were able to do this,
we would be no closer to computing r;, and r;, so we would still have a
Dillie-Hellman problem to solve.

Another possible attack on the system could be attempted by an impostor
trying to disguise himself as user k. In this case he can send a number x of
his own choosing in place of x, , and try to compute (or guess) the secret key
K = (x°I,)" (mod n) . This requires the impostor to compute x and r with
x‘I, = g (modn). If we hold one of the unknowns x and r fixed, then
this requires solving either an instance of the discrete logarithm problem or
an RSA decryption. On the other hand, the impostor is free to choose both
variables, which makes this problem look something like the ElGamal and
Ong-Schnorr-Shamir problems.

As a final note we should perhaps point out a small error in [48]. There
it is stated that for any integer x there is an integer r such that x =
Ij_dg’ (modn), but in fact this is true for at most one-half of the possi-
ble values of x, since the subgroup of (Z/nZ)"* generated by g is of order
lem{p—1,¢q-1} < %(p(n) . This detail does not seem to affect their argument,
however.

8. Miscellaneous Topics
We close with a whirlwind tour through a few of the many other problems
that have turned up in applications to cryptology. Unfortunately, the one
additional feature that these problems seem to have in common is that we
know so little about them that relatively little can be said about them. The
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purpose of such a cursory description here is to give pointers to literature for
future research, and to show the diversity of problems that arise.

The first problem that we will mention sounds more combinatorial than
number-theoretic, but we mention it here because no one has yet been able
to exploit the underlying algebraic structure. The problem is called the “per-
muted kernel problem” and was proposed by Shamir [58] as a basis for se-
curity in an extremely efficient zero-knowledge identification scheme. The
problem can be stated very simply as follows: Given an m X n matrix A4
with m < n and an n-dimensional vector v over a finite field, find a permu-
tation matrix P so that A4Pv = 0. The problem is NP-complete, but this
may be due to the fact that it is hard in a small number of cases. It would
be interesting to see what sorts of algorithms could be devised for various
choices of the parameters (beyond those that appeared in [58]).

An interesting variant of the RSA scheme as it applies to digital signatures
was proposed in [21]. Their suggestion was to use as the signature of the

message M the value § = p2M+D)7 (medg(n) (mod n), where n is an RSA
modulus. Such a scheme offers several practical advantages over RSA but
has its security based on a different problem. For such a scheme, someone
who wishes to forge a signature to the message M needs to be able to create
a solution S to the congruence S*M*! = M (mod n). The relationship of
this problem factoring or inverting RSA is not clear.

Several cryptographic schemes have been proposed that have their secu-
rity based on the difficulty of solving polynomial equations in finite fields (or
systems of polynomial equations). One notable example is given by Purdy
in [52], where he proposed a one-way function for validating passwords. Ac-
cording to [44], this is used in the VMS operating system (but ignore the
technical description there!). Purdy’s idea was to evaluate a sparse poly-
nomial of very large degree over a finite field. Since a power x? can be
evaluated in O(logd) field operations, a polynomial with 7 terms and de-
gree d can be evaluated in time O(T logd) operations. On the other hand,
all of the known algorithms for determining roots of polynomials over finite
fields have running time that is at least linear in the degree d (see [53]).
Faster methods for finding roots of sparse polynomials would therefore be of
great interest. Another instance in which this would be of interest is in the
Chor-Rivest knapsack-based public-key cryptosystem (discussed in the paper
by Odlyzko on knapsack cryptosystems). Faster algorithms for factorization
of polynomials over finite fields would be useful for speeding the decryption
of messages by the legitimate receiver, and faster algorithms for factorization
of trinomials of large degree would be useful for cryptanalyzing the scheme.
For further details on the latter attack, see [11].

Another scheme based on the difficulty of solving polynomial equations ap-
peared in [42], where an encryption scheme was presented for which decrypt-
ing a message requires finding a solution to a system of quadratic
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polynomial equations

F(x,x,...,x,)=0

F(x;,%,,...x,)=0

over a finite field of characteristic 2. This problem is known to be NP-hard
when solved over GF(2), but rather little is known about the general case.
Yet another public-key encryption scheme based on the difficulty of solving
a system of polynomial equations over a finite field is given in [60].

In the search for sequences that are hard to predict, Damgard [19] has
suggested using the sequence

(&), ..., (s2D),

where the starting point k& and possibly also the modulus p are secret. For
values of / that are as small as logp, it can be proved that the next term
cannot be predicted with any certainty, because each such sequence is equally
likely to occur. For cryptographic applications we would like to say that
much longer strings cannot be used to predict the next term. Thus it would
be interesting to know more about the distributional properties of sequences
of Legendre symbols, and about the computational problem of determining
the unknown parameters from knowledge of a given sequence.

Because the various number-theoretic cryptosystems that have been pro-
posed are computationally demanding for legitimate users when compared
with traditional methods, a great deal of effort has been devoted to finding
methods for speeding the low-level arithmetic required. As an example, RSA
requires efficient methods for modular multiplication and exponentiation.
One very simple method for speeding modular multiplication was invented
by Montgomery [45] for speeding various factorization methods, but in fact
the same method has also proved to be useful in allowing larger moduli to be
used in RSA. Interest has also been focused on the general topic of addition
chains for rapid exponentiation. A (somewhat out of date) survey of results
in this area can be found in [36], and more recent heuristics can be found in
[9].

The notion of a zero-knowledge “proof” system provides a powerful tool
for the design of cryptographic protocols and is discussed at length in the ac-
companying paper by Goldwasser. Much of the work in this area has focused
on developing foundations for cryptology, but other work has focused on de-
veloping very efficient and practical cryptographic schemes. For example, in
situations where a trusted authority is required to produce a number that is
the product of two large primes, but for which the primes are supposed to
remain secret, the users would like to be convinced that the number » has
the desired form. A partial answer to this is provided in [61], where they
describe a method for “proving” that a composite is of the form p'q’, where
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p and g are primes that are = 3(mod4), and r and s are odd. Other
interesting examples of zero-knowledge protocols for number-theoretic prob-
lems are provided in [10] and [16]. Two interesting open questions in this
area are the following:

Find an efficient zero-knowledge protocol for “proving” that a num-
ber is squarefree,
Find an efficient zero-knowledge protocol for “proving” that a num-
ber generates a large subgroup of Z/nZ (or that two numbers gener-
ate all of Z/nZ).

It has been proved that any problem belonging to the complexity class
NP has an interactive “proof” system, so that in theory such protocols ex-
ist. The problem here is to find protocols that are efficient in the sense that
the prover can get by with limited computational power, and few rounds of
communication are required.

One of the most famous problems in computational number theory is
Gauss’s class number problem, by which we mean the calculation of the
class number A(D) of a quadratic number field when the discriminant D is
given. This has been proposed as the basis for security in a Diffie-Hellman
key distribution scheme by Buchmann and Williams in [14] , [15]. While the
schemes they proposed are still viable, considerable progress has been made
on algorithms for the calculation of class numbers. For the case of imaginary
quadratic number fields of negative discriminant —d , Hafner and the author
proved in [32] that there exists a probabilistic algorithm to compute A(—d)
in expected time exp(/(2 + ¢&)logdloglogd) operations, assuming the ex-
tended Riemann hypothesis. An algorithm for the case of real quadratic
fields was proposed in [13], with similar running time. Thus we see that
work on some of the oldest problems in computational number theory can
find motivation through cryptology.

Conclusion
The rate of progress in the applications of number theory to cryptology
during the last few years has been remarkable. In spite of this progress, it is
also apparent that there are a number of areas where there is much work left
to be done.
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