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ABSTRACT: There are numerous cryptosystems that have their secu-
rity based on the presumed difficulty of computational problems in number
theory. In particular, variations of the Diffie and Hellman key distribution
scheme have been proposed that rely on the difficulty of discrete logs in
various groups, on the difficulty of factoring integers, and on the difficulty
of computing the class number of an imaginary quadratic number field.
We begin by surveying the development of key distribution schemes, and
conclude with a discussion of computational problems in class groups. We
present new probabilistic algorithms for calculating class numbers of imag-
inary quadratic number fields, and for calculating discrete logarithms in
class groups. We also prove under the assumption of the extended Rie-
mann hypothesis that the problem of calculating the class number of an
imaginary quadratic number field belongs to the complexity class NP.
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1 The Diffie and Hellman Key Distribution Scheme

In 1976, Diffie and Hellman wrote a paper [12] that began a revolution
in the design of secure communication systems, a field known as cryptog-
raphy. A central idea in their paper is that secure communications might
be conducted between two parties without any prior exchange of secret in-
formation. They discussed many different types of cryptosystems, includ-
ing key distribution systems, public-key cryptosystems, and authentication
schemes via digital signatures. These developments have opened a new area
of applications of number theory to cryptography, and sparked a renewed
interest in computational number theory.

In the first part of this paper we shall describe several different varia-
tions of the original Diffie-Hellman key distribution scheme, with emphasis
on the computational problems in number theory that are involved. This
shall lead us to consider computational problems in class groups of imagi-
nary quadratic number fields, and in the second part of the paper we shall
describe several new algorithms for such problems.

The purpose of a key distribution scheme is to allow two parties to con-
duct a conversation over an insecure communication channel, after which
they are both able to construct a cryptographic key (string of bits) that is
infeasible for an eavesdropper to construct. In the original paper of Diffie
and Hellman, they proposed a very simple scheme that has now found
widespread use. Since their original proposal, several variations have been
proposed that have the potential to offer greater security. Of these, several
can be viewed within the following framework. Let G be a finite group
(written multiplicatively), and let ¢ € G. Assume that the following infor-
mation is publicly known:

e the group element g,
e a fast algorithm for computing a - b when given a € G, b € G.

e an easily computable injective function f : G — {0,1,...,M}.

The purpose of the function f is to provide a way to identify group elements
with keys. The set {0,1,...,M} is chosen only because it is a convenient



set of keys. Note that M is an upper bound for the cardinality of the group
G.

A Diffie and Hellman key distribution scheme can now be described as

follows: Two parties A and B who wish to agree on a common key from
the set {0,1,..., M} proceed as follows:

e A chooses a random number z with 0 < z < M, computes g%, and
sends the result to B , keeping z secret.

o B chooses a random number y with 0 < y < M, computes ¢¥, and
sends the result to A , keeping y secret.

e Both A and B use the key f(¢g*¥), which A computes as f((g¥)*), and
B computes as f((g%)").

The well known binary method of exponentiation (see [21, p. 442]) can be
used to compute g*¥ in O(log M) group operations.

If this scheme is to be secure, then the problem of computing ¢*¥ from
knowledge of g, g* and g should be intractable. We shall refer to this
problem as the Diffie-Hellman problem. A related problem is the so-called
discrete logarithm problem: given g and a € G, find = with g* = a, provided
one exists. Clearly if one can solve a generic instance of the discrete loga-
rithm problem, then one can also solve the Diffie and Hellman problem. It
has further been conjectured that if one can solve the Diffie and Hellman
problem, then one can also solve the discrete logarithm problem. This re-
mains one of the interesting unsolved problems in the field, but progress
was very recently made in this direction [7]. At least we can say that no
one has found any other approach to the Diffie and Hellman problem other
than by solving the discrete logarithm problem.

1.1 The Choice of a Group

The history of algorithms for discrete logarithms is somewhat obscure.
Apparently the earliest efforts were concerned with the case where G =
(Z/pZ)* for a prime p, and ¢ is a primitive root modulo p. These early
efforts were directed toward compilation of tables of discrete logarithms



rather than working on algorithms for individual logarithms. One such
table appeared in Gauss’ Disquisitiones Arithmetice [13] of 1801, in which
he published a table of primitive roots and indices for the primes less than
100. Another notable example is Jacobi’s Canon Arithmeticus [19] of 1839,
which contains a table for the primes less than 10000 (a more complete
history of tables appears in Lehmer’s guide [25]). The techniques used
by these early researchers were extremely tedious, and their efforts were
probably focused more on managing the size of the tables rather than on
producing the logarithms efficiently. Still, it does at least show that eminent
mathematicians started thinking about the difficulty of the problem at a
very early stage.

The discovery of algorithms with nontrivial complexity was delayed until
well into the computer age [35], [34], [21, exercise 4.5.3]. The most efficient
algorithm that is known for the Diffie and Hellman problem (and the dis-
crete logarithm problem) in a general finite group uses O(|G|"/**¢) group
operations, where |G| denotes the cardinality of the group G. For some spe-
cific choices of G however, extra knowledge concerning the group structure
sometimes provide us with more efficient algorithms. As an extreme exam-
ple, consider the case where a polynomial time computable isomorphism
¢ : G — Z/nZ is known for some integer n. In this case, the extended
Euclidean algorithm provides a polynomial time algorithm for the discrete
logarithm problem! To see this, notice that ¢(g*) = z¢(g), so that solving
g® = y can be accomplished by computing z so that z¢(g) = ¢(y) (mod n).

Between these two extremes one might wonder if there can be any good
choices for a group to use in the Diffie and Hellman scheme. The original
Diffie and Hellman proposal used the multiplicative group of invertible el-
ements in a finite field Z/pZL with a prime number of elements. In this
case the best known algorithm for the Diffie and Hellman problem uses
L(p)**°() group operations, where L(p) is defined as

L(p) = exp(y/log ploglog p).

A completely different algorithm due to Silver, Pohlig, and Hellman [34]
has running time O(ql/2 log® p), where C is a constant and ¢ is the largest
prime factor of p — 1. In the case where ¢ is small this provides a far more
efficient algorithm.



Numerous other groups have been suggested for a Diffie and Hellman
scheme. One possibility is to use a finite field of characteristic 2. This
gives the advantage that the group arithmetic is easier to implement than
in fields of prime order about the same size. Unfortunately this same struc-
ture that allows us to do the arithmetic faster also allows us to devise an
asymptotically faster algorithm for the discrete logarithm problem [10]. For
more information concerning modern algorithms for the discrete logarithm
problem in finite fields, consult the survey by Odlyzko [32].

Another proposal for a group was made by Odoni, Varadharajan, and
Sanders, [33], who suggested using GL,(Z/pZ), the group of invertible
n X n matrices over the finite field Z/pZL. While this may appear to add
something to the problem, it turns out that discrete logarithms in this group
can be computed by computing discrete logarithms in extension fields of
ZL/pZL (see {32, p. 230]).

Yet another proposal made independently by Miller [31] and Koblitz
[22] was to use the group of points on an elliptic curve over a finite field.
The best known algorithms for such groups are as yet only the algorithms
that work for arbitrary finite groups, so that one might be able to use a
smaller group. A pessimistic view of these groups would say that since
elliptic curves are endowed with such a rich algebraic structure, perhaps
there is a way to exploit this to find a very efficient algorithm for discrete
logarithms. This remains only speculation, and in the meantime the choice
appears to be secure. More recently, Koblitz [23] has suggested the use of
groups associated with higher dimensional varieties, since they seem to lack
the structure built into elliptic curve groups.

1.2 A Scheme Based on Factoring

Since we have seen that the specific structure of the group may provide
faster algorithms for discrete logarithms, there is some reason for hesitation
in the choice of a group. Ideally, the goal of cryptography should be to
design schemes for which there exists a proof of security. In the case of the
Diffie and Hellman key distribution scheme, we would like to prove that
the computation of the secret key is infeasible for an eavesdropper, while
preserving the ability of the two parties A and B to easily construct the



key. Unfortunately, the state of computational complexity theory does not
allow us to do this. In fact, the type of result that we would like to prove
is very similar to what would be required to prove that NP#P, which is
probably the biggest unsolved problem in complexity theory. Because of
such difficulties, the popular approach has been to devise cryptosystems
whose security is based on computational problems that are believed to be
difficult. With this approach, the best argument that can be made is one
based on history, namely that a computational problem has been studied
over a long period of time without an efficient algorithm being found.

The problem in computational number theory that has probably been
studied most extensively is that of finding the prime factors of an integer.
In particular, factoring was studied at length by Gauss [13], who regarded it
as one of the most fundamental computational problems. The problem has
continued to occupy the imagination of mathematicians in this century.
Some of the earliest computational work done by machines was done by
D. N. Lehmer for the purpose of factoring. Since the discovery of the
RSA public key cryptosystem, there has been a flurry of activity involving
new algorithms and the application of the most powerful computers yet
developed. In spite of all this attention and the advances that have been
made, factoring has remained a difficult problem.

Given the amount of attention that has been directed to factoring, it
would seem desirable to construct a Diffie and Hellman key distribution
scheme that makes use of the difficulty of factoring. This was in fact sug-
gested independently by Z. Shmuely [44] and the author [30]. The basic
idea is to construct an integer n = pq that is the product of two large
primes, and use the multiplicative group (Z/nZ)*. In the variation of [30],
it is proved that if we use ¢ = 16 and choose n = pq, where p and ¢ are
primes such that p = 3 (mod 8), ¢ = 7 (mod 8), (p — 1)/2 and (¢ — 1)/2
are prime, and (p+1)/4 and (g + 1)/8 each have a large prime factor, then
if one can solve the Diffie and Hellman problem over Z/nZZ, one can also
recover the factors of n. Hence it is at least as difficult to break the scheme
as it is to factor such an integer n.

The most important feature of this variation is that this scheme will
remain secure if esther factoring or the original Diffie-Hellman problem in
ZL/p7ZL remains intractable. It is quite obvious that if one can solve the



Diffie and Hellman problem in Z /nZZ, then one can also solve it in Z/pZ..
Hence the new scheme is at least as difficult to break as the original proposal
of Diffie and Hellman, and it is also as difficult to break as it is to factor
n. This provides an extra measure of security which could prove to be
crucial, since the scheme will still be secure even if someone discovers a fast
algorithm for one of the two problems.

1.3 Class Groups

The real attraction of using the problem of factoring as a basis for
security is that the problem has been studied over a long period of time.
A natural question to ask is whether there are any other natural problems
aside from factoring that are apparently difficult and have been studied
from a computational viewpoint over a long period of time. One such
problem is clearly the class number problem. This is a problem that was
studied at length by Gauss, who made it the centerpiece of his monumental
Disquisitiones Arithmetice. Since then the theory of class groups has been
the object of intense scrutiny by many eminent number theorists.

In order to describe the class number problem, we shall need a few
definitions. Let d > 4 satisfy d = 0 or 3 (mod 4), and let C(—d) denote the
group of SL;(Z) equivalence classes of primitive binary quadratic forms
of discriminant —d (see section 2 for definitions). Furthermore let h(—d)
denote the cardinality of C(—d). From Gauss’ point of view, the class
number problem would be stated as follows: given an integer k, determine
all integers d for which h(—d) = k. The form of the class number that is
more suitable for our purposes is: Given a value of d, calculate h(—d).

The possibility of using a class group for Diffie-Hellman key distribution
was mentioned in {30}, but Buchmann and Williams [8] also had the same
idea and were the first to recognize the significance of such a choice. They
proposed a scheme with a property that is similar to the one of [30], namely
that it will remain secure if either of two presumably hard computational
problems remains secure. This can be done by choosing a discriminant
d = pq that is the product of two large primes. They prove that if an
eavesdropper can break the Diffie and Hellman problem in C(—d) with
randomly chosen bases and exponents, then the eavesdropper can also fac-



tor d. Hence their scheme provably combines the difficulty of factoring with
the difficulty of breaking the Diffie and Hellman scheme in a class group.

All of the known approaches to finding discrete logarithms in a group G
require the knowledge of |G|. In fact, an argument similar to that in [4] will
show that this is to be expected, since any algorithm that will compute dis-
crete logarithms for arbitrary powers of an element in a finite abelian group
can be used to compute the order of that element. As a consequence of
this situation, the known approaches to breaking the Buchmann-Williams
scheme require the computation of h(—d) in addition to the ability to factor

d.

1.4 Outline of the Rest of the Paper

At the time that Buchmann and Williams wrote their paper, the fastest
published algorithm for computing the class number h(—d) was due to
Shanks, and had running time of O(dY/**¢), or O(d/5*¢) assuming the ex-
tended Riemann hypothesis (ERH). These algorithms are deterministic, but
have running times that are exponential in the size of the input d, and are
clearly hopeless if the discriminant exceeds 10'%, In section 3 I shall sketch
new two probabilistic algorithms for the computation of h(—d). These al-
gorithms have running times that are of the form L(d)® for a constant ¢,
but the analysis of the running time depends on a heuristic assumption. In
section 5 I shall sketch a related algorithm for the computation of discrete
logarithms in C(—d), when C(—d) is cyclic and h(—d) is provided. The
expected running time of the discrete logarithm algorithm can be proved
to be L(d)'*°(1) under the assumption of ERH.

The precise complexity of computing class numbers is unknown, but
it is at least as difficult to compute h(—d) as it is to factor d. In fact,
some of the most sophisticated factoring methods are based on the theory
of class groups (see [41] and [26]). To show just how little we know about
computing h(—d), it was pointed out in [6] that it is unknown whether the
problem of computing h(—d) belongs to the complexity class NP. In section
4 I shall give a partial answer to this question by sketching a proof that the
problem of computing h(—d) is in NP if the extended Riemann hypothesis
is true.



Even though these new algorithms have conjectured asymptotically
smaller running times than the previous best algorithms, it remains to
be seen whether the crossover point between their running times is small
enough to have any influence on the choice of d in the Buchmann-Williams
scheme. Even under the most optimistic circumstances these new algo-
rithms would run only as fast for a discriminant d as the fastest known
factoring algorithms for a number of size d. Hence it should be easy to
choose the size of d in such a way as to make the Buchmann-Williams
scheme immune to such an attack.

2 Background Information on Class Groups

There are two possible points of view in any discussion of class groups;
namely that of ideals or quadratic forms. The former has the advantage of
allowing easy generalizations, while the latter has the advantage that it is
slightly easier to describe. We shall use the language of forms; for a good
exposition of the connection between the two languages, see the paper of
Lenstra [28], or the book of Hua [18]. Let d > 4 be such that d = 0 or 3
(mod 4). A binary quadratic form of discriminant —d is a polynomial
az? + bzy + cy? with % — 4ac = —d. We shall always assume that a > 0, so
that our forms are positive definite. For convenience we shall write such a
form as (a, b,c), or simply (a,b,-) when the discriminant is understood. A
form (a, b, ¢) is called primitive if and only if gcd(a, b, c) = 1, and a primitive
positive definite form (a,b,c) is called reduced if and only if

—a<b<a<e or 0Lb<La=c.

Primitive positive definite forms f, = (ay,b1,¢1) and f; = (az,bs,¢;) are
called equivalent if and only if a;2% + byzy + ¢1¥? = a; X% + b, XY + ¢, Y2,

HEH!

for some matrix D such that det(D) = 1. It is easy to show that this is
indeed an equivalence relation on the set of primitive positive definite forms
of a given negative discriminant, and we shall denote the equivalence class
of a form f as [f]. The number of such equivalence classes is finite, and



is called the class number h(—d). It is known that the set of equivalence
classes form a finite abelian group under the operation of “composition”.
This operation can be given explicitly as

[(aS, b3,¢3)] = [(al’bl, cl)] ° [(aZ, b2ac2)]’
where
a; = a103/g”
bs = by+2asr/g
b2 +d
Cz3 =
40,3

g = gcd(ag,as, (b + b2)/2)
aay + Baz + (b1 + b2) /2
r = ﬂ(bl - bz)/z — 7Ca.

L=}
Ii

So far the arithmetic of the group has been described in terms of the
equivalence classes themselves, but fortunately each equivalence class con-
tains a unique reduced form, and there is an efficient algorithm that will
produce this reduced form. One such algorithm is as follows:

Reduction algorithm. Input a form f of discriminant —d, and output
an equivalent reduced form (a,b,¢c).

Step 1 Set (a,b,¢) := f.
Step 2 Find A € Z with —a <b+2X\a < a.
Step 3 Set (a,b,¢) := (¢ + Ab + A2a,—b — 2)a,a).

Step 4 If (a,b,c) is not reduced, then return to Step 2. Otherwise
output (a,b,c).

Henceforth we shall assume that the group operation consists of composi-
tion followed by reduction. Using this form of the group law, it is easy to
test equality between group elements, and a single group operation requires
O(log? d) bit operations.



The following result of Schoof [40, Corollary 6.2] shows that there is an
easily computable set of generators for the class group C(—d).

Theorem 2.1. Let p; be the ith prime with (i_i) =1, and let
b; = min{b € Z' : b* = —d (mod 4p;)}. (2.1)

If ERH is true, then there ezists an effectively computable constant c,

such that the classes [(pi,bi,-)], 1 < i < m generate C(—d) provided
Pm > colog? d.

We remark that the precise value of ¢y can be deduced from the work
of Bach [5].

3 Algorithms for Computing Class Numbers

The main goal of this section is to describe an algorithm for the com-
putation of h(—d) whose heuristic running time is L(d)V?+*()., We also
sketch the ideas required to produce an algorithm with running time of
L(d)*V¥/4+°() (note that 3v/2/4 ~ 1.06). The primary inspiration for these
algorithms came from reading Seysen’s paper [41], and in fact many of the
arguments used here follow very closely those of [41] and Lenstra[26]. Sey-
sen’s paper deals with an algorithm to factor N by computing a very large
multiple of the class number A(—N) (or A(—3N) if N = 1 (mod 4)). The
observation that led me to the algorithms described here is that if we can
generate random multiples of the class number, then by generating several
of these and taking gcd's, we can obtain the class number itself rather
quickly. It should be noted that H. W. Lenstra Jr. and A. K. Lenstra
[27] have described similar ideas for computing class numbers and discrete
logarithms in class groups.

The algorithms for computing h(—d) that we shall describe are proba-
bilistic, but may be classified as Las Vegas algorithms under the assumption
of the extended Riemann hypothesis. This means that if the algorithm pro-
duces an output, then the output will be correct if the extended Riemann
hypothesis is true. This is not a trivial point, since even if a suspected
value of h(—d) is known, it is not obvious how to verify its correctness. We
shall return to this point later in section 4.
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In order to prove that the algorithm will produce an output with non-
negligible probability, we shall rely on a heuristic assumption. The precise
statement of this assumption will be stated later, but it involves the as-
sumption that the multiples of the class number generated behave as true
random multiples. From a mathematical standpoint it is disappointing not
to have a complete proof for the running time of the algorithm, but this
is less important from a cryptographic standpoint. After all, if there is
reason to believe that an algorithm may break the system, then this is suf-
ficient justification to discard the system (or possibly increase the key size)
without waiting for a proof that it is vulnerable. '

3.1 Shanks’ Algorithm

Before describing the new algorithm, it is instructive to consider the al-
gorithm of Shanks [42], [43] (see also [40] or [28]). This algorithm combines
three major ideas. The first is based on Dirichlet’s class number formula,
which for a discriminant d > 4 takes the form

vd ~d i

h(—d) = — 1-|—]pt) .

(-d)=— 1I > |7
p prime

The first idea used in Shanks’ algorithm is to use a partial product to obtain

an interval containing the class number. Unfortunately the product con-

verges very slowly, so that many terms are required to get a short interval.
The second idea is to use Lagrange’s theorem

fec(—d)= i) =1, (3.1)

in order to eliminate integers from the interval. The last idea that is used
in Shanks’ algorithm is the so-called baby steps-giant steps method, which
allows us to search the interval faster.

3.2 The Basic Subexponential Algorithm

I will now outline a new subexponential algorithm for computing h(—d)
that may be viewed as an extension of Shanks’ algorithm. The key obser-
vation is that we can replace the trivial group relation (3.1) by a set of
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random relations on a set of generators of the class group. Once we do
this, we are able to derive significantly more information concerning the
class number.

A rough outline of the most basic form of the new algorithm is as follows:
(for later convenience, we leave the parameter z unspecified)

Algorithm CN1 Inputd > 4 with d = 0 or 3 (mod 4), and output h(—d).

Step 1 Compute a rational number B with B < h(—d) < 2B.
Step 2 Set M = |max{colog® d, L(d)?}| and H := 0.

Step 3 Compute the prime forms (p;, b;,-) with p; < M, and let N
be the number of such forms.

Step 4 Generate “random relations” of the form
N
H[(pj’bjs')]a‘j =1, 1<:<N. (3'2)
i=1

Step 5 Set H := gcd(H,|det(a;;)|). If B < H < 2B, then output
h(—d) = H. Otherwise return to step 4.

It remains to determine the probability that such an algorithm will
produce an output, and to give details on how to carry out each step,
particularly the mysterious step 4. Before doing so, let us first see why any
output that is produced from such an algorithm will in fact be the class
number h(—d), at least assuming ERH.

From Theorem 2.1 it follows that the classes [(p;,b;,7)], 1 < ¢ < N
form a generating set for C(—d), assuming ERH. Let £ be the additive
subgroup of Z" consisting of all (z1,...,Zn) with I’[f;l[(pj,b,-,-)]xi = 1.
As was pointed out in [41], we have Z" /£ = C(—d), and the subgroup K
of Z" generated by the rows of the matrix A = (a:;) is a subgroup of L,
so that |det(A)| = |Z"/K| is a multiple of h(—d). Hence any output of
the algorithm is a multiple of h(—d), but then it must be the actual class
number since that is the only multiple of h(—d) in the interval [B,2B).

We next explain how to carry out step 1. The idea here is to use the class
number formula in essentially the same manner as in Shanks’ algorithm,

12



except that we need far fewer terms since the interval is longer than what
is required in Shanks’ algorithm. A result of Schoof [40, Theorem 6.3]
states that assuming ERH, there exist constants ¢; and ¢; such that if
T > ¢; log?d, then

()
-1 ()

From Schoof’s result we can easily derive a constant ¢s such that if z =
cs log® d, then

< ¢z~ log(dx).

Define

3 < 7h(—d)

4 |Vd]h(2)
where 7 = 22/7 is an approximation to n. We then take B =
3|v/d|h*(z)/(47). Note that each of the factors in the product for A*(z) can
be computed in polynomial time using quadratic reciprocity, and that the
number of bits in the numerator and denominator of the rational number

h*(z) is O(X,<, logp), or O(z) by the prime number theorem. Thus B can
be computed in polynomial time.

<3
2

Step 3 requires us to find the primes p < M for which (_Td) =1, and
for each of these primes to find b with 4> = —d (mod p). It follows from
the Cebotarev density theorem that the number N of such primes sat-
isfies N = L(d)**°(). This computation can be done by generating the
primes by a sieve, evaluating the Jacobi symbol via quadratic reciprocity,
and for each of the acceptable primes solving the quadratic congruence by
Berlekamp’s algorithm. All of these computations can be done in O(M!*¢)
bit operations.

Step 4 is particularly vague; what do we mean by a random relation,
and how do we generate such things ? We begin by stating the following
result of Schnorr [38]:

Theorem 3.1. If [(a,b,¢)] € C(—d), then for every prime p with pla

we have (:p—d) = 1. Furthermore, if a = [, p{’, then b = €b; (mod 2p;)

1=1

13



and
m

[(a,b,¢)] = H[(pi’ by, -)]5,

i=1
where ¢; = +1 and b; ts defined by (2.1).

It follows from this result that a form [(a,b,-)] can be written as a
product of small prime forms if the lead coefficient a can be factored as a
product of the corresponding small primes. Using this fact, we can produce
relations of the form (3.2) by the following simple procedure.

Fort=1,...,N, do:

Step 1 Choose z;, 1 < j < N randomly and uniformly from

{,...,d.

Step 2 Compute a reduced form (a, b, ¢) with

N
[(0,, b, C)] = H[(pi’b.f’ ')]Zj' (3'3)

i=1
Step 3 If a admits a factorization a = f;l p;, then set a;; = z; —

€je;,1 < 3 < N. If not, then return to step 1.

The most straightforward way to test the lead coefficients a is to use
trial division by the primes p;,...,pn, but a faster method is to use the
rigorous version of the elliptic curve factorization method as described
by Pomerance [36]. Using this technique, we essentially attempt to fac-
tor the lead coefficients over a slightly smaller set of “good primes” us-
ing the elliptic curve method of H. W. Lenstra, Jr. In the notation of
[36], let S(y) denote the set of primes 3 < p < y for which there are at
least /pexp(—%(log y)!/7 log log y) numbers in the interval (p— VP, P+ /D)
that have all of their prime factors less than exp((log p)®/?). Pomerance
proved that there is a random algorithm with the following properties.
It receives as input an integer a and a parameter M > 2, and produces
as output integers F' and R with a = FR and the complete prime fac-
torization of F. Moreover, with probability at least 1 — (loga)/a, no
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prime in S(M) divides R. The running time of Pomerance’s algorithm
is O ((log a)* exp (2(log M)%/7)).

Pomerance’s rigorous elliptic curve algorithm provides an efficient pro-
cedure for testing the lead coefficients a. We first use trial division to find all
prime factors of a less than exp(64(log log d)®). If this does not completely
factor a, then we apply Pomerance’s rigorous elliptic curve algorithm with
M = L(d)? to the residual. By the manner in which the forms (a,b,c)
are generated in (3.3), it can be shown that the forms that are gener-
ated are essentially uniformly distributed among the different equivalence
classes (see [41, Proposition 4.3]). Furthermore, a slight modification of
the argument leading to Proposition 4.4 of [41] shows that the probabil-
ity is at least L(d)~/(4s)+°(1) that the procedure just described will yield a
factorization of a and a relation of the form (3.2) . Since the calculation
in (3.3) takes O(N log®d) bit operations, we expect to generate a relation
with L(d)**/#2)+(1) gperations, and to generate N such relations takes ex-
pected time L(j)”“/(“)“(l). By choosing z = 1/+/8, we obtain a relation
matrix in L(d)V2+°() operations.

We now discuss the work required to carry out step 5 of algorithm CN1.
An upper bound on the size of det(A) is provided by Hadamard’s inequality,
using the fact that the entries are bounded in size by 2d:

| det(4)] < (VANE)" = exp(L(d)*+*M).

Using Gaussian elimination and the Chinese remainder theorem as de-
scribed in [41, section 3], we can compute det(A) in L(d)**+°(!) operations.
The gcd' s can be computed via the Euclidean algorithm in L(d)?**°() op-
erations [21, p. 338].

Up until this time all of the arguments can be made completely rigorous
under the assumption of the extended Riemann hypothesis. The number of
operations used for steps 1-4 is L(d)‘ﬁ“(l). The only issue remaining to be
addressed is the probability that an output will actually be produced, and
it is here that I will resort to a heuristic argument. The argument is based
on the principle that “two randomly chosen integers are relatively prime
with probability 6/72”. A more precise and more general mathematical
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basis for this heuristic is the statement that

lim #{(my,...,my) : 1 <m; <z, ged(my,...,my) =1} _ 1

z—00 t S.(t) ’ (3'4)

where ¢(t) is the Riemann zeta function. Imagine now a situation in which
we are attempting to compute some unknown integer k, but all that we are
able to do is produce random multiples of k£ from the interval [0, z]. We can
then devise a probabilistic algorithm to compute k by simply computing
several such random multiples km,,..., km;, and computing their greatest
common divisor. If z is large, then with probability close to ?(137’ we will
have gcd(kmy,...,km;) = k. Since 1/¢(t) ~ 1 —27% as ¢t tends to infinity,
the probability that k& will be computed by the process tends very rapidly
to 1.

In the case of the class number algorithm, the random multiples that
are generated are not chosen exactly from a uniform distribution since they
are determinants. As before, let £ denote the lattice of all relations on the
generators [(pi,b;,-)], 1 <1 < N, and let L be a matrix whose rows are a
basis for the lattice £. It follows from the theory of lattices that there exists
a matrix B such that A = BL, where A is the matrix of relations generated
in the algorithm. Hence det(A) = det(B)det(L) = det(B)h(—d). What
is required is to prove that the matrices B have the property that they
have a nonneglible probability of having relatively prime determinants. It
can be proved that each relation vector z in the box ||z]|o, < d is nearly
equally likely to occur as a row of the matrix A, so that a representative
row b of B is essentially chosen uniformly from a parallelepiped of the form
||bL||eo < d. While I am not able to rigorously prove that matrices chosen
in such a way are likely to have relatively prime determinants, it seems very
likely to be true. In fact, there is a heuristic argument suggesting that two
such determinants are relatively prime with probability

1 (- fre-r))

If the probability can only be shown to be bounded away from zero, then a
bounded number of passes through step 4 will produce the correct output.
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3.3 A Faster Version

In this section we shall describe the changes that are necessary to achieve
a heuristic running time estimate of L(d)3V?/4+°(}) (Note that 3v2/4 ~
1.06). The major idea is to use a sparse relation matrix. Again leaving the
parameter 2z to be chosen later, an outline of the algorithm is as follows.

Algorithm CN2 Inputd > 4 withd =0 or 3 (mod 4), and output h(—d).

Step 1 Compute an integer B with B < h(—d) < 2B.
Step 2 Set H :=0 and M = |max{L(d)?,colog® d}].

Step 3 Compute the prime forms (p;, b;,-) with p; < M. Let m be
the number with p; < ¢olog?d, and let N be the number with
pi <M.

Step 4 Set i:=0.

Step 5 Choose z;, 1 < j < m randomly and uniformly from
{1,...,d}.
Step 6 Compute a reduced form (a, b, c) with

s

[(a,8,)] ~ TT1(ps b5, )17

j=1

Step 7 Apply trial division by the primes p; < exp(64(log log d)®),
followed by the rigorous elliptic curve method to determine if a
admits a factorization

N
a=[Ip/.
=1

If not, then return to step 5. If a does admit such a factorization,
then set 1 :=1+1 and

zj —€e;, 1<3j<m
ai; = { —¢€je;j, m<j<Nande #0
0, otherwise.
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Step 8 If © < N, then return to step 5. Otherwise set H :=
gcd(H, | det(ay;)|). If B < H < 2B, then output h(—d) = H.
Otherwise return to step 4.

The number of operations required by each of steps 1-7 is L(d)°(1), and the
probability that a will be completely factored in step 7 is L{d)~/(42)+e(1),
Hence the generation of the relation matrix can be expected to take
L(d)=*/(42)+e(1) bit operations. Note that the relation matrix (a;;) has
O(log® d) nonzero entries in each row, so at most L(d)**°() nonzero entries
in all.

The evaluation of det(A) can be speeded up if we use the Chinese re-
mainder theorem and Wiedemann’s coordinate recurrence method [45]. We
first choose L(d)**°(*) primes of size O(d) in such a way that their prod-

uct exceeds (v 4N dz)N (our upper bound for |det(A)|). This can be done

probabilistically in L(d)”"m operations by choosing random integers from
the interval [d,2d] and applying the Adleman-Pomerance-Rumely primal-
ity test [2]. For each of these primes p, we then use Wiedemann’s algo-
rithm to compute |det(A)| (mod p). For each prime this can be done in
L(d)?**°() operations. We then use the Chinese remainder theorem to
compute |det(A)| modulo the product of the primes, and in so doing we
get | det(A)| exactly. The work for the Chinese remainder theorem can be
done in L(d)**°(1) bit operations (see [3, p. 311], so the determinant can be
done in L(d)3**°()) operations. The gcd's can be computed in L(d)?*+°(®)
operations.

Putting all of these estimates together, we obtain a running time of
L(d)ma{z+1/(42)8z}+0(1) gperations. By choosing z = 1/\/§, we obtain a
heuristic running time estimate of L(d)s‘/f/ 4+o(1) bit operations. Again, with
the exception of the argument concerning the determinants being relatively
prime, we can rigorously prove all of the estimates assuming ERH.

The bottleneck in the previous algorithm is in computing the huge de-
terminants, but this part might be avoided altogether. One approach to
this is provided in [27], where they generate an oversquare matrix with the
hope that the extra relations will be enough to generate the entire lattice.
From this set of generators, one can produce a basis for the lattice using
an algorithm as in {29] of [20], and compute h(—d) from this much smaller
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determinant.

3.4 Practical Versions ?

I make no claim that the subexponential algorithms I have described
here are presented in a manner suitable for implementation. This is anal-
ogous to the situation for factoring algorithms, where the algorithm that
seems to be most practical for factoring integers with two large prime fac-
tors is the quadratic sieve algorithm, but the running time of this algorithm
is asymptotically bigger than that of the best known algorithms. In any
actual implementation of an algorithm for computing ~A(—d) based on ideas
from this paper, a great deal of attention should be payed to minimizing
the number of operations such as composition and reduction, even though
in the theoretical versions presented here they contribute essentially noth-
ing to the running time. Probably the most significant improvement in a
practical version is to use the idea of generating a slightly oversquare ma-
trix, perhaps calculating determinants of submatrices. This allows us to
gain as much information as possible from the relations that are generated.
Finally, anyone who intends to build an implementation should probably
take the following advice.

Skillful mathematicians know how to reduce tedious calcu-
lations by a variety of devices, and here experience is a better
teacher than precept.

— K. F. Gauss (1801), Disquisitiones Arithmetice, Art. 78

4 Computation of h(—d) in NP

The purpose of this section is to prove under the assumption of the ex-
tended Riemann hypothesis that the problem of computing h(—d) belongs
to the complexity class NP. One interpretation of this statement is that
there exist short proofs of correctness for the value of h(—d). A complete
proof that the problem of computing h(—d) would use the terminology of
language recognition problems, but I shall instead use an informal descrip-
tion of the argument. A formal definition of the complexity class NP can
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be found in {3]. Informally we may think of the class NP as the set of lan-
guages for which there exists a succinct certificate of membership, or as the
set of problems that are solvable in polynomial time by a nondeterministic
Turing machine. We can think of such a machine as making a polynomial
length sequence of binary guesses for the certificate, and then checking the
validity of the certificate. The trick to showing that a problem belongs to
NP is to come up with a polynomial length certificate.

The basic idea of the algorithm is to first compute a small generat-
ing set for C(—d) as in Theorem 2.1, and a rational number B such that
B < h(—d) < 2B, using the class number formula just as in Section 3.2.
Assuming ERH, we have already seen that this can be done in polynomial
time. The algorithm then guesses a basis for the lattice of relations on the
set of generators, computes the determinant of the basis matrix A, and ver-
ifies that B < |det(A4)| < 2B. According to the theory of finitely generated
abelian groups (see [17] for the theory), such a basis must exist, and the
determinant is equal to h(—d). The matrix A has a number of entries that
is polynomial in log d, and the determinant can be computed in a polyno-
mial of steps. All of these things together then constitute the certificate of
validity for h(—d).

In fact we might as well assume that the algorithm gives a triangular
basis for the lattice of relations, since the Hermite reduction algorithm
as described in [20] gives a polynomial time algorithm to produce such a
basis from an arbitrary basis. Given a triangular basis, we can recover
the invariant factors of C(—d) from the diagonal entries of the triangular
basis, and in this way produce the structure of the group in addition to its
cardinality.

5 Algorithms for Discrete Logarithms in Class Groups

At the time that Buchmann and Williams proposed their scheme, the
best known algorithm for computing discrete logarithms in the class group
was the algorithm that works over an arbitrary finite group, and has com-
plexity O(d'/4*¢). In this section I shall explain how the methods of the
previous section can be adapted to give a probabilistic algorithm with ex-
pected running time L(d)'*°("), assuming that h(—d) is known.
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Before we discuss the algorithm there are a few other matters to clear
up. First of all, as we mentioned previously, any algorithm that will solve
g® = f for random choices of £ can be used to compute the order of g.
Hence we may as well assume that h(—d) is known, particularly since we
can calculate it by applying the algorithm of Section 3.2 (although the
running time for that algorithm is longer).

The second point is that the class group C(—d) is not always cyclic, and
even if it was, the base for our discrete logarithms need not be a generator
of the entire group. For the purpose of the discussion here we shall ignore
this problem, and assume that the class group is cyclic and generated by the
element g. In fact, heuristic evidence of Cohen and Lenstra [9] suggests that
the odd part of the class group is cyclic about 97.75% of the time anyway,
and the cyclic case is probably the most interesting for the cryptographic
application.

The discrete logarithm algorithm that we shall describe uses what is
known as the index calculus method. This technique has a precomputation
phase in which the discrete logarithms of the elements of a small set of
generators are computed. In the case of G = Z/pZ, this small set of
generators consists of an initial segment of small primes. As a historical
note, it is perhaps interesting to record that a similar technique was already
known to Kraitchik [24] in 1924, although he seemed to view it more as a
way to devise compact tables of discrete logarithms. In the case of a class
group, we use the small prime forms for the set of generators. It should
be noted that the idea of using the index calculus method in class groups
was also arrived at independently by A. K. Lenstra and H. W. Lenstra, Jr.
[27], and by C.-P. Schnorr [39].

We shall begin by describing a simplified version of the algorithm. Let
M = | L(d)?], let py,...,pn be the primes for which p; < M and (;—f’) =1,
and let f; = [(p;,b;,°)], 1 < 7 < N. The index calculus method has three
stages. In the first stage, we gather equations of the form

N
Il 57 =¢% 1<i<N. (5.1)
=1

In stage two, we interpret these equations as a system of linear equations
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of the form

N
> ailog, f; = z; (mod h(—d)), 1<i<N, (5.2)

J=1

and solve this system for the unknown values log, f;. Finally in stage three
we use the discrete logarithms of the small prime forms to solve for log, f.
Subsequent calculations of log, y for other classes y require only the third
stage to be carried out.

Stage one can be carried out in much the same way that relations were
generated in the class number algorithms. We simply choose integers z;
randomly and uniformly from the interval [1, h(—d)], compute a reduced
form (a,b,c) in the class g*, and attempt to write it in terms of the fi
by factoring the leading coefficient a. The factorization of a can be at-
tempted with the rigorous elliptic curve method, using L(d)"(l) operations.
If g generates all of C(—d), then this procedure will succeed with probabil-
ity L(d)~1/(42)+°(1) 50 the generation of N such equations can be done in
expected time L(d)>+1/(42)+o(1),

Let us assume that the matrix A has full rank, so that we can solve
this system of linear equations for the unknown values log, fi. The solution
can be computed using Gaussian elimination or the coordinate recurrence
method of Wiedemann. Using Gaussian elimination takes L(d)%*+°(1) op-
erations in the ring Z/h(—d)Z, so also L(d)%***°() bit operations. If we
instead use Wiedemann’s method, then it takes only L(d)?**°(}) operations
since the matrix A4 has only L(d)**°(") nonzero entries. Here we should take
note of the fact that Wiedemann’s method is intended to work over a finite
field, whereas we are really working over the ring Z/h(—d)Z, which is not
a field. Pomerance [36] has pointed out two ways of getting around this.
In the first method, we first factor h(—d), using for instance the algorithm
REC of [36], which takes L(k(—d))V?+*(}) operations. Since it is known
that h(—d) < v/dlogd, this can be done in L(d)*°() operations. Once
h(—d) is factored, we can use Wiedemann’s method to solve the system
of equations modulo the prime factors of h(—d), and use the Chinese re-
mainder theorem and Hensel’s lifting technique to construct the solution
modulo h(—d). Hence if A has full rank, then we can carry out stages one
and two in L(d)™={222+1/(4z}+o(1) gperations. If we choose z = 1/2, then

22



we get a running time for stages one and two of L(d)**°(!), and a storage
requirement of L(d)**°(!) as well.

It may be that the matrix A that is generated in stage one does not
have full rank. In practice this should happen with low probability, but it
appears difficult to prove this directly. In order to obtain a rigorous proof
for this, we modify stage one in the manner used by Pomerance [36]. Let
£ = |2log, N| + 3 (that’s base 2 logarithm!). Proceeding as in (5.1), we
choose random values of z € [1,h(—d)] and generate N¢ equations of the
form

N
H f,’ == gz. (5.3)
i=1
Then for k = 1,..., N we generate £ equations of the form
N
H fi' = feg®. (5.4)
i=1

All together this gives us 2/N£ linear equations, and it follows from a result
of Pomerance [36, Lemma 4.1] that this system will have full rank with
probability at least 1 — 1/(2N).

We now describe stage three of the algorithm in which we calculate
log, f. If the leading coefficient of f can be factored as a product of the
primes less than M, then this gives log, f as a linear combination of log, f;,
1 <1< N, since

N N
f= Hf;’ = log, f = Ze,-logg fi-
i=1 =1

If the leading coefficient of f does not admit such a factorization (or if we are
unable to calculate it), then we simply choose random value z € [1, h(—d)],
and compute a reduced form in the class of g*f. The probability is at least
L(d)~1/(42)+o(1) that we can find a factorization of the leading coefficient
of this form, and we can compute log, f from this. Hence the expected
running time of stage three is L(d)/2+(1),
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6 Epilogue

In case the reader doubts the practicality of these applications, they
should be aware that at Eurocrypt ‘88 (an annual conference on cryp-
tography), there were four private companies displaying cryptographic
equipment using some variation of the Diffie and Hellman key distribu-
tion scheme, and a company called CYLINK of Sunnyvale, California has
recently produced a special purpose chip that is capable of performing a
1024-bit modular exponentiation in 640 milliseconds. Diffie and Hellman
schemes are apparently very practical, and are becoming widely accepted.

Number theory is one field of mathematics that up until recently has
seemed most remote from applications, as attested to by the famous number
theorist G. H. Hardy [16]

The Theory of Numbers has always been regarded as one of the
most obviously useless branches of Pure Mathematics.

A similar view was expressed by Paul R. Halmos (14, p. 18]:

Whether contact with applications can prevent or cure the dis-
ease of elaboration and attenuation in mathematics is not really
known; what is known is that many of the vigorous and defi-
nitely non-cancerous parts have no such contact (and probably,
because of their level of abstraction, cannot have any). Current
examples: analytic number theory and algebraic geometry.

It is amusing to note that both analytic number theory and algebraic ge-
ometry have figured prominently in the recent cryptographic literature.

There is a tendency among many “pure” mathematicians to regard any
contact of their mathematics with applications as degrading to its quality
as mathematics. This view was not shared by Hardy, who later in life wrote
the following [16, p. 120].

If the theory of numbers could be employed for any practical
and obviously honorable purpose ...then surely neither Gauss
nor any other mathematician would have been so foolish as to
decry or regret such applications.
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In my view, the recent discovery that very old and elegant parts of number
theory have important and practical applications should not be viewed
with alarm by mathematicians. Many areas of mathematics have derived
benefit from stimulation provided by “the outside world,” and there is no
reason to think that number theory should be any different. The field of
cryptography provides a powerful motivation to investigate computational
questions in number theory and algebraic geometry, with the goal of proving
either that the systems discussed here are secure because the problems
are truly difficult, or the systems are insecure because of some algorithms
yet to be discovered. The interplay between the pure (number theory)
and the applied (cryptography) is invigorating to both, since it has the
potential to stimulate much fruitful research in the future, and it also has
the potential to dramatically improve the methods used to protect the
integrity of information.
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