Computation of Discrete Logarithms in
Fields of Characteristic Two

Daniel M. Gordon and Kevin S. McCurley
Sandia National Laboratories

July 2, 1991

1 Introduction

The difficulty of computing discrete logarithms was first proposed as the ba-
sis of security for cryptographic algorithms in the seminal paper of Diffie
and Hellman [5]. The discrete logarithm problem in a finite group is the
following: given group elements g and a, find an integer & such that ¢* = a.
We shall write £ = indga, keeping in mind that indga is only determined
modulo the multiplicative order of g. For general information on the discrete
logarithm problem and its cryptographic applications, the reader may con-
sult [8] and [9]. In this paper we shall report on some computations done
for calculating discrete logarithms in the multiplicative group of a finite field
GF(2").

The computations that we carried out used a massively parallel imple-
mentation of Coppersmith’s algorithm [3],which we outline in section 3. The
results of our calculations will be presented in section 5. A great deal of effort
(and CPU time!) has been expended on the cryptographically relevant prob-
lem of factoring integers, but rather little effort has gone into implementing
discrete logarithm algorithms. The only published reports on computations
using Coppersmith’s algorithm are in [3, 4] and [1]. Both papers report on
the calculation of discrete logarithms in the field GF(21%7).

Odlyzko [9] has carried out an extensive analysis on Coppersmith’s algo-
rithm and projected the number of 32 bit operations required to deal with
a field of a given size. From this analysis he made the prediction that fields

1

of size 25%° should be feasible using a supercomputer.A similar analysis was
made by van Oorschot [10], with somewhat more OPTIMISTIC (?) pre-
dictions. Both of their predictions are consistent with our experience, and
in particular we report here on the successful computation of discrete loga-
rithms for fields of size up to GF(2°%). The major limitation at this point
seems to lie as much in the linear algebra, which consumes not only a large
amount of computation time but also requires large amounts of storage.

2 Coppersmith’s algorithm

Coppersmith’s algorithm belongs to a class of algorithms that are usually
referred to as index calculus methods, and has three stages. In the first stage,
we collect a system of linear equations (called relations) that are satisfied by
the discrete logarithms of certain group elements belonging to a set called
a factor base. In our case, the equations are really congruences modulo the
order of the group, or modulo 2" — 1. In the second stage, we solve the
set of equations to determine the discrete logarithms of the elements of our
factor base. In the third stage, we compute any desired logarithm from our
precomputed library of logarithms for the factor base.

For the Coppersmith algorithm, it is convenient that we construct our
finite field GF(2") as GF(2)[z]/(f(z)), where f is an irreducible polynomial
of the form z” + f,(x), with f; of small degree. Heuristic arguments suggest
that this should be possible, and a search that we made confirms this, since
it is possible to find an f; of degree at most 11 for all n up to 600, and it it
is usually possible to find one of degree at most 7. For the construction of
fields, it is also convenient to choose f so that the element z (mod f(z)) is
primitive, i.e. of multiplicative order 2" — 1.

For a given polynomial f that describes the field, there is an obvious
projection from elements of the field to the set of polynomials over GF(2) of
degree at most n. In our case, we shall take as our factor base the set of field
elements that correspond to the irreducible polynomials of degree at most B
for some integer B to be determined later. Let m be the cardinality of the
factor base, and write g; for an element of the factor base. We note that an
equation of the form

m
[Tg =2

=1

implies a linear relationship of the form

Z e;ind,g; =t (mod 2" — 1).

=1

In order to describe the first stage in the Coppersmith method, we shall
require further notation. Let r be an integer, and define h = |n277| + 1.
To generate a relation, we first choose random relatively prime polynomials
uy(z) and uy(z) of degrees < d; and d, respectively. We then set w,(z) =
uy(z)z* + uy(z) and '

wy(2) = w(2)? (mod f(z)). M
It follows from our special choice of f(z) that we can take
wa(z) = uy (2)z " fi(z) + uy(2?), (2)

so that deg(w;) < max(2"d; + h2" — n + deg(f1),27d;). If we choose d,, d,,
and 2" to be of order n'/ 3 then the degrees of w; and w, will be of order n2/3,
If they behave as random polynomials of that degree (as we might expect),
then there is a good chance that all their irreducible factors will have degrees
not exceeding B. If so, then from (1) we obtain a linear equation involving
the logarithms of polynomials of degree < B.

An asymptotic analysis of the algorithm suggests that it is possible to
choose the parameters so that the asymptotic running time of the first stage
of the algorithm is of the form in such a way that the expected running time
to complete stage one is of the form

exp((cz + o(1))n3log?®n), where ¢, < 1.351.

In the second stage, the solution of linear equations modulo 2" — 1 can
be accomplished using fairly well understood algorithms. Since most linear
algebra algorithms are designed to work over a field, it is convenient to work
modulo the prime factors of 2* — 1 and use Hensel’s lemma and the chinese
remainder theorem to produce the solutions modulo 2" — 1 (factorizations of
2" —1 can be found in [2]). Ordinary Gaussian elimination takes about m?/3
operations (modulo some prime factor p), but this analysis does not take into
account the fact that the equations produced in stage 1 are extremely sparse.

For sparse equations there are several methods that can be employed, and in
theory we can solve the systems in time O(B?*¢) operations.

An analysis of the running time for the third stage (which we do not
describe in detail here) suggest a running time of

exp((ca + o(1))k'/* log™* k),

where c3 < 1.098, so it takes less time than the first two stages.
The preceding statements pertain to the asymptotic running time, but

2.1 Refinements of Stage 1.

Odlyzko has suggested several ways to speed up the performance of stage 1.
None of these affect the asymptotic running time, but each of them may have
some practical significance by speeding up the implementation by a factor of
two or three. We shall not discuss these methods in great detail, but merely
report on which of the methods we chose to implement.

2.1.1 Forcing a Factor Into w; and w,

One method that was suggested by Odlyzko for improving the probability
that w; and w; were smooth was by forcing them to contain at least one small
degree factor. The method is described in complete detail in [9] and [10], but
roughly speaking we fix polynomials v; and v, of degree at most B, and
consider those (uj,u;) pairs for which w; and w, are divisible by v; and
vy respectively. The (uy,us) pairs with this property are described by a
rather small set of linear equations modulo 2, and we can easily find such
pairs by Gaussian elimination. For the size fields that we considered, the
linear systems had fewer than 50 rows and equations, and a special purpose
routine to solve these systems proved to be extremely efficient (rows could be
added together by using two xor operations). One problem with this method
is different vy, v, pairs can lead to the same u;,u; pairs, making it rather
difficult to avoid duplication of effort. As far as we can tell, we were the first
to implement this method, and our experience with it seemed to agree with
the predictions made by Odlyzko.

2.1.2 Large Prime Variation

One well known method for speeding up the generation of equations is to use
also equations that involve only one irreducible polynomial of degree only
slightly larger than B. The rationale for this is that these equations can be
discovered essentially for free, and two such equations involving the same
“large prime” can be combined to produce an equation involving only the
irreducibles of degree at most B. Many such equations can be discovered
by checking whether after removing the smooth part from a polynomial, the
residual factor has small degree. After combining two such equations, the
equations produced are on average twice as dense as the other equations,
so they complicate the linear algebra in stage 2. We chose to report the
equations, but because of problems with the linear algebra, we have not yet
made use of the extra equations.

2.1.3 Double Large Prime Variation

Just as we can use equations involving only a single irreducible of degree
slightly larger than B, we can also use equations having two “large prime”
factors. This has been used to speed up the quadratic sieve integer factoring
algorithm [7], and we might expect the same sort of benefit when it is applied
to the Coppersmith algorithm. Many such equations can be produced from
reporting those u;,u; pairs that produced a w; and wy; both of which con-
tained a large prime factor. Once again, we chose to report such equations,
but have not been able to use them yet because of the difficulty in solving
the (denser) system of equations.

2.1.4 Smoothness Testing

The most time-consuming part of the Coppersmith algorithm is the testing
of polynomials for smoothness. At least two methods have been suggested
for doing this, both of which are outlined in [9]. Of the two methods, we
found the one used by Coppersmith to work faster for our implementation,
and this was initially what we used.

After having carried out the computation for the case n = 313, we looked
around for any variations that would speed up the smoothness testing. Draw-
ing on the knowledge that sieving can be exploited to great advantage in
integer factoring algorithms, we sought a way to use sieving to test many

5

polynomials simultaneously for smoothness. Sieving over the integers is rel-
atively efficient due to the fact that integers that belong to a fixed residue
class modulo a prime lie a fixed distance apart, and it is very easy to incre-
ment a counter by this quantity and perform a calculation on some memory
location corresponding to the set element. For polynomials, the problem is
slightly different, since we saw no obvious way of representing polynomials in
such a way that representatives of a given residue class are a fixed distance
apart. It turns out that this is not a great deterrent, since what is important
is the ability to quickly move through the representatives, and for the data
structures that we used, this can be done using the notion of a Gray code.

The method that we chose to use was to take a fixed u,, and set up a
segment of memory corresponding to the polynomials u, of degree up to d,.
This memory segment was initially set to contain all zeros. Then for each
irreducible polynomial ¢ of degree d < B, we stepped through those memory
locations corresponding to the w;’s that are divisible by ¢, incrementing the
memory location by d. After doing this for all irreducible powers of degree
up to B, we scanned the memory segment to find those that contained a
contribution large enough to show that the corresponding w; was built up
from only small degree irreducibles. We could as easily have set up the sieving
to be over polynomials w,, but we chose to sieve over the w,’s because they
always had larger degree and were therefore less likely to be smooth.

The reason that sieving works so well for the quadratic sieve algorithm is
that it replaces multiple precision integer calculations with simple addition
operations. We gain the same sort of advantage in Coppersmith’s algorithm,
by eliminating the need for many modular multiplications involving polyno-
mials. The actual operation counts for sieving come out rather close to the
operation counts given in [9] and [10], but in the case of sieving the operations
are somewhat simpler.

2.1.5 Early Abort Strategy

One strategy that has been suggested for locating smooth integers is to search
through random integers, initially dividing by small primes. At a certain
point, we then check to see if the residual factor has moderate size, and
abort the testing if it fails. It so happens that a random integer is more
likely to be B-smooth from having many very small prime factors than it
is from having just a few factors near B, and it follows that we should not

spend a lot of time dividing by moderately large primes to test for smooth-
ness. This strategy has come to be known as the “early abort” strategy,
and the same heuristic reasoning carries over to the smoothness testing part
of Coppersmith’s algorithm. Odlyzko predicted that this may result in a
speedup of a factor of two in the algorithm, but we never got around to im-
plementing it. The major reason for this is that there seems to be no obvious
way to combine this idea with sieving, and the latter gave a somewhat better
speedup.

2.1.6 Alternative Equations

In going through the uy, u, pairs in a range of interest, those of small degree
have a slight advantage in producing relations, for the simple reason that they
lead to smaller degree w; and w, that are slightly more likely to be smooth.
By employing a slight variation of (2), we can produce a different set of
equations and effectively reduce the degree of u; or u; by one. For example,
we can choose h = [n27"| (smaller by one) and take w; = "% w?". In this
case, we get

wa(z) = uy(a¥) fi(x) + 2" uy(z7). (3)

The equations generated in this manner seem to be independent from those
produced by (2), and essentially allow us to reuse the same range of u; and
ug. This gives an expected speedup by a factor of about two.

2.2 Linear Algebra

The solution of sparse linear systems over finite fields have received much less
attention than the corresponding problem of solving sparse linear systems
over the field of real numbers. The fundamental difference between these
two problems is that issues involving numerical stability problems arising
from finite precision arithmetic do not arise when working over a finite field.
The only pivoting that is required is to avoid division by zero. Algorithms
for the solution of sparse linear systems over finite fields include:

¢ standard Gaussian elimination.
o structured Gaussian elimination.

e Wiedemann’s algorithm.

o Conjugate Gradient.
¢ Lanczos methods.

A description of these methods can be found in the paper by LaMacchia and
Odlyzko [6], where they describe their experience in solving systems that
arise from integer factoring algorithms and the computation of discrete loga-
rithms over fields GF(p) for a prime p. We chose to implement two of these
algorithms: conjugate gradient and structured Gaussian elimination. For
handling multiple precision integers we used Lenstra-Manasse package. The
original systems were reduced in size using the structured Gaussian elimina-
tion algorithm, after which the conjugate gradient algorithm was applied to
solve the smaller (and still fairly sparse) system. All of the calculations were
done on Sun workstations. For the case of n = 313, we chose a factor base of
all polynomials of degree < 21 (58636 of them). We generated approximately
84000 relations on these logarithms, which the structured Gaussian elimina-
tion program reduced down to a system of approximately 8500 equations in
the same number of variables. This reduction of the system took only a few
minutes on a Sun workstation. We then solved the smaller system using con-
jugate gradient algorithm, solving the system modulo p for the four prime
factors p of 2213 — 1 (these were run in parallel on four workstations). The
longest of these took approximately 7 days to run. After this we combined
the solutions modulo p to get the solution modulo 2213 — 1 of the reduced
system, and substituted these logarithms back into the original system to

solve for most of the remaining logarithms of factor base elements. BOY IS
THIS VAGUE.

3 Our Implementation

As Odlyzko pointed out in 1984, Coppersmith’s algorithm parallelizes in a
trivial way, by splitting up the testing of u;, u; pairs across many processors.
Sandia National Laboratories has two fairly large massively parallel systems
in place at this time, namely a 1024 processor Ncube-2 MIMD “hypercube”
and a 16384 processor Thinking Machines CM-2. When we started this
project, it was not at all clear to us which of these machines would be better
suited to Coppersmith’s algorithm. There were at least two reasons that we
originally thought the CM-2 might be better. The first reason is the fact that

8

it has more processors, even though they are considerably less powerful. The
second reason is that the CM-2 uses bit-serial processors that are seemingly
as happy dealing with bit fields of length 128 as they are with fields of
length 32. We also perceived the CM-2 to provide a fairly nice interface for
programming.

In examining the Coppersmith algorithm, it looks like a perfect example of
an algorithm that can easily be implemented in the data-parallel paradigm of
CM-2 programming. We planned to simply spread the u;,u, pairs across the
processors, and have them all perform the same smoothness test on their own
wy and w,. What we overlooked was the fact that the CM-2 must perform
the same arithmetic or logical operation on all processors using data located
at the exact same memory address in each processor. For our application,
this was a serious problem. As an example of why, consider the calculation
of polynomial ged’s, which requires repeated shifting and xoring of bit fields.
Using any of the high-level languages on the CM-2, we could not see a way
to shift fields by differing amounts corresponding to the data located on
that processor. The only way to do this was to shift all polynomials by
one position, and carry this out the addition on those processors that had
their polynomials lined up correctly. This means that the worst case among
the 16384 processors would determine the rate at which we could perform
polynomial operations, and resulted in rather disappointing runtimes. While
the CM-2 looks like a great bit-twiddling machine, we could not seem to
efficiently do the kind of twiddling we needed to do!

By contrast, the processors on the Ncube-2 are rather standard 64 bit
microprocessors that operate at approximately 4 MIPS. There are only 1024
of them, but this is more than made up for by the fact that it is able to xor
fields of length 64 together in a single operation (in fact, due to a limitation in
the current C compiler, we only used the 32 bit operations of the processors).
For this machine we first wrote a serial version in standard C, and then simply
added a few lines to instruct the processors as to what range of u; and u;
they were to examine. We defined a single data structure called a poly whose
members include an int to store the degree of the polynomial and an array
of unsigned int’s to store the coefficients, packed 32 coefficients to a word.
This packing was chosen not to save space, but rather to allow us to add
polynomials by xoring the corresponding int’s together.

We were hindered at several points along the way from the fact that
the Ncube-2 was a research machine rather than a well-tested production

9

machine. Such machines are routinely used for applications in scientific com-
puting, but not very often for the sort of work that we were doing. As a
result, we were puzzled for some time by a problem that turned out to be a
C compiler error involving the way shifts were done. The operating system
for the individual processors also did not reliably support multitasking, and
corruption of individual nodes required the entire machine to be rebooted
(a process that takes only a few seconds, but is extremely disruptive when
several users are using different subcubes).

The Ncube is a very powerful machine, but we also required a tremendous
number of operations to be performed. Luckily the Coppersmith algorithm
can be broken down into very small pieces that are independent, which al-
lowed us to plan the calculation as a sequence of many batch jobs. We wrote
a few short programs to poll the machine every few minutes, and load in new
jobs whenever there was extra space. We also wrote a program to allow other
users to kick us out from parts of the machine, so that it would not interfere
with other users’ work. This crude approach allowed us to get around the
lack of multitasking on the processors, and obtain a large number of CPU
cycles. We tended to use about one fourth of the processors during the day,
and a large fraction of the whole machine at night. This lasted for several
months while we completed the different cases described in section 5.

4 Results

We started out by repeating Coppersmith’s calculation of discrete logarithms
for GF(2'*"). Our original goal was to determine whether it was possible to
compute discrete logarithms for the field GF(25%), which has been suggested
for possible use in at least one existing cryptosystem. Odlyzko predicted
that fields of size up to 521 should be tractable using the fastest computers
available within a few years (exact predictions are difficult to make without
actually carrying out an implementation). His predictions turned out to be
fairly accurate, and it now appears to be within the realm of possibility
to carry out the calculation for fields of this approximate size. We believe
that 521 should now be possible to complete, albeit with the consumption of
massive amounts of computing time.

We have actually completed most of the calculations required to compute
discrete logarithms for the fields GF(2") for n = 227, n = 313, and n = 401.

10

We have also started gathering relations for the case n = 503, and it appears
that this will be possible within about six months elapsed time. We have
confined ourselves to relatively small factor bases, primarily because of the
difficulties we had in solving the linear systems. Completion of the case
n = 503 will require significantly more effort to be spent on the linear algebra,
and in particular we plan to implement the linear algebra algorithms on the
Ncube (a Cray would probably suffice, but we do not have access to free time
on such a machine).

Dan: We need to give some figures on the number of processor-hours used
to generate the relations, and say more about the size of factor bases.

References

[1] L. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone. Computing
logarithms in fields of characteristic two. SIAM Journal of Algebraic
and Discrete Methods, 5:276-285, 1984.

[2] John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and
Jr. S. S. Wagstaff. Factorizations of b* £ 1, b = 2,3,5,6,7,10,11,12
up to high powers, volume 22 of Contemporary Mathematics. American
Mathematical Society, Providence, second edition, 1988.

[3] D. Coppersmith. Fast evaluation of discrete logarithms in fields of char-
acteristic two. IEEE Transactions on Information Theory, 30:587-594,
1984.

[4] D. Coppersmith and J. H. Davenport. An application of factoring. Jour-
nal of Symbolic Computation, 1:241-243, 1985.

[5] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22:472-492, 1976.

[6] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems
over finite fields. preprint, 1990.

[7] A. K. Lenstra and Mark Manasse. Factoring with two primes.

11

[8] Kevin S. McCurley. The Discrete Logarithm Problem, volume 42 of Pro-
ceedings of Symposia in Applied Mathematics, pages 49-74. American
Mathematical Society, Providence, 1990.

[9] A. M. Odlyzko. Discrete logarithms in finite fields and their crypto-
graphic significance. In Advances in Cryptology (Proceedings of Furo-

crypt 84), number 209 in Lecture Notes in Computer Science, pages
224-314, Berlin, 1985. Springer-Verlag.

[10] Paul C. van Oorschot. A comparison of practical public-key cryptosys-
tems based on integer factorization and discrete logarithms. preprint,
1991.

12

