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Abstract. We describe a modification of an interactive identification scheme of
Schnorr intended for use by smart cards. Schnorr’s original scheme had its security
based on the difficulty of computing discrete logarithms in a subgroup of GF(p)
given some side information. We prove that our modification will be witness hiding,
which is a more rigid security condition than Schnorr proved for his scheme, if
factoring a large integer with some side information is computationally infeasible.
In addition, even if the large integer can be factored, then our scheme is still as
secure as Schnorr’s scheme. For this enhanced security we require only slightly
more communication and about a factor of a 3.6 increase in computational power,
but the requirements remain quite modest, s0 that the scheme is well suited for use
in smart cards.
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1. Introduction

In this paper we describe an interactive identification scheme that is a variation of
a scheme presented by Schnorr at Crypto '89 [17]. Schnorr’s scheme has several
features that make it advantageous for use in smart cards or other environments
with limited computing power. Its security, more specifically, the soundness of the
protocol, is based on the difficulty of the discrete logarithm problem in a subgroup
of Z3.

Due to the current state of complexity theory, cryptographic schemes whose
security is based on the difficulty of solving a specific computational problem are
exposed to the danger that a fast algorithm may be found for the underlying
computational problem. It therefore seems desirable to design systems with the
property that breaking them requires the ability to solve two apparently dissimilar
computational problems, both of which appear to be hard. An example of such a
scheme was given in [13], where 2 key distribution scheme with this property was
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given. The key distribution scheme of [13] uses arithmetic modulo a number n that
is a product of two primes. Breaking the system requires the factorization of n and
the ability to solve the Diffie-Hellman problem modulo the prime factors of n. In
the present paper we take a slightly different tack, by using arithmetic modulo a
prime p. We choose p with the property that p — 1 has at least two large prime
factors, so that the factorization of p — 1 is hard to recover. We then construct the
system in such a way that breaking it requires both factoring p — 1 and computing
a discrete logarithm in a subgroup of Z}.

The extra security gained in this scheme extracts a penalty both in the computa-
tion time and the communication time, but the scheme still carries the advantage
of allowing preprocessing of most of the computation, and should still be quite
feasible for use in smart cards. The relative merits of the schemes will be discussed
later, after we first present the schemes in detail.

The scheme that we present in this paper is simpler than the one presented in our
Eurocrypt ‘90 paper [2]. There are also changes in what we can prove about the
security. We can prove that the new scheme is witness hiding if factoring p — 1 is
hard. For the scheme in [2] and for Schnorr’s scheme [ 17], nothing has been proved
about witness hiding. Also, the scheme in [2] is sound if either factoring p — 1 or
computing a discrete logarithm in a subgroup of Z} is hard. However, the new
scheme is sound only if computing a discrete logarithm in a subgroup of Z} is hard.

2. Schnorr’s Identification Scheme

We begin by describing the original Schnorr authentication scheme in terms of a
security parameter £. In this scheme, each person who wishes to use the scheme to
prove his identity will visit a key authentication center (KAC) and register his or
her public key. When the KAC is originally set up, it chooses

primes p and g such that g|p — 1, ¢ = 2'%°, and p > 2°'2,
o of order g in the group Z},
its own private and public keys for a signature scheme.

The KAC publishes p, g, «, and its public key. When a user comes to the KAC
for registration, the user chooses a secret s € {1, ..., g}, computes v = «~* (mod p),
and submits v to the KAC along with some form of identification. The KAC verifies
the user’s identity, generates an identification string I, and also generates a signature
& of the pair (I, v). The KAC can use any secure digital signature scheme whatsoever
for generating this signature.

We now describe the procedure by which party P (the prover) can prove its
identity to V (the verifier). In a preprocessing phase, P should first have chosen a
random number r € {1, ..., ¢} and computed x = a” (mod p). In the identification
procedure, P first sends to V its identification string I, its public key v, the KAC’s
signature & of (I, v), and x. V then checks the validity of P’s public key by verifying
the signature &, chooses a random e € {1, ..., 2'}, and transmits e to P. P sends to
V the value y := r + se (mod gq). Finally, V checks that x = o*v¢ (mod p) and accepts
P’s proof of identity if this holds.

Schnorr suggests using t = 72, although this can be reduced substantially for use
in the identification scheme (Schnorr also proposed a companion signature scheme
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which requires the larger t). The parameter ¢ is used to control the probability that
an impostor will be able to guess a correct response to a challenge e. For use in an
identification scheme, we need only choose t so large that the probability 27 of
guessing the challenge e is negligible.

This scheme has a number of novel features. First of all, much of the arithmetic
to be done by the prover can be done in a preprocessing phase, using idle time of
the processor. This is well suited to the case of a smart card, where the processing
power is relatively small. Second, the number of bits that must be communicated
is considerably reduced over other schemes such as RSA or Fiat—Shamir. There is
also a signature scheme based on the same choice of keys, but we shall not discuss
it here in great detail.

Schnorr’s scheme may be regarded as a practical refinement of the zero-
knowledge protocols of Chaum et al. [4] and [3] for demonstrating possession of
a discrete logarithm. In [4], the challenge e was either a zero or a one, and the basic
protocol was repeated several times (requiring the prover to perform multipie
exponentiations). Yet another interesting identification scheme based on discrete
logarithms was proposed by Beth [1]. The security of the latter scheme is however
more closely related to the ElGamal signature scheme.

3. The Modified Scheme

In this section we shall describe the modification of Schnorr’s scheme. The essential
differences are that s is chosen and y is computed modulo p — 1 rather than modulo
g, and that q is secret. Rather than the single security parameter t, we describe the
scheme in terms of the parameters k and ¢, with ¢t < k. The KAC is used in the same
manner as before. In the set-up phase, the KAC chooses primes p, ¢, and w such
thatqw|p — 1,¢*}p — 1,q,w > 2*,and qw > 2°!2. The KAC also chooses « of order
g in the group Z¥. The KAC publishes p, o, and its public key, but not g or w.

When a user wishes to join the system, he chooses a random number
se€{l,...,p — 1}. The user then computes v = «~* (mod p), and presents v to the
KAC along with some form of identification, but keeps s secret. The KAC verifies
the user’s identity, checks that v? = 1 (mod p), generates an identification string I,
and produces a signature & of the pair (I, v), which it provides to the user. Once
again the KAC can use any digital signature scheme whatsoever.

In the identification procedure, P once again has a preprocessing phase, where
P chooses from the uniform distribution a random number re {1, ..., p — 1} and
computes x = o (mod p). Then P sends to V the identification string I, its public
key v, the KAC’s signature %, and x. V checks the authenticity of P’s public key by
verifying the signature & of (I, v). If the keys are authentic, then V chooses a
randome € {1, ..., 2'} and transmits e to P. P then computes an integer y such that
y=r+ se (mod p— 1) and sends y to V. V checks that x = «*v° (mod p) and
accepts P’s proof of identity if this condition is satisfied.

The parameter ¢ can be adjusted to suit specific needs, but we suggest using t = 40.
With this choice, there are 2*C possible challenges e, and the probability of guessing
the challenge ahead of time is therefore 274°,

Some care should be exercised in choosing the primes g and w, and in particular
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we should try to choose them in such a way as to thwart any known algorithms for
factoring gw. The choice of k =~ 140 is probably marginal in avoiding a determined
implementation of the elliptic curve method of H. W. Lenstra, Jr., but may suffice
for applications of a commercial nature. At present the record for the largest factor
found by the elliptic curve method has 38 decimal digits, or about 127 binary digits
(this factor was found by Robert Silverman). On the other hand, choosing k > 200
will probably be safe against any conceivable implementation, and in any case the
modified scheme imposes no performance penalty for choosing g larger, since all
arithmetic is done modulo p or p — ! anyway. The construction of p should be
relatively easy, since heuristic evidence (see [19]) suggests that we should expect a
prime p = 1 (mod gw) can be found with p < qw log?(gw).

The recent results of Lenstra and Manasse [11] and Lenstra et al. [12] have
raised a question about how long a 512-bit modulus will remain safe from attack
by current factorization methods. We suspect, however, that by the time anyone
will have at their disposal enough computational power to factor a general 512-bit
modulus, the smart card technology will probably have advanced enough to allow
easy use of a 1024-bit modulus. Moreover, the best known attack for breaking the
scheme we present here requires in addition the computation of a discrete logarithm
modulo a 512-bit prime, and current algorithms will probably have a much more
difficuit time with this problem.

4. Performance Analysis of the Modified Scheme

It is evident that the modified scheme suffers from a slight disadvantage in the
number of bits that must be communicated. The following tables show the number
of bits to be communicated in the two schemes, using the security parameters
mentioned above. For the sake of comparison, we have assumed that 100 bits suffice
for each of I and . We have used a value of k = 140 in the original scheme.

Original scheme Modified scheme
I 100 I 100
v 512 v 512
S 100 S 100
x 512 X 512
e 40 e 40
y 140 y 512

Totalbits 1404 Totalbits 1776

The modified scheme therefore pays a penalty of an extra 372 bits in communica-
tion, and possibly more if error correction is included. On the other hand, this is
still well within the realm of possiblity using present technology.

We now compare the computational requirements of the two schemes. We first
consider the off-line computation, where in both schemes the prover computes a”
(mod p). In the Schnorr scheme, r is chosen uniformly between 1 and g, while in our
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scheme,  is chosen uniformly between 1 and p — 1. Hence our scheme requires
about log, p/log, g more off-line computation. In the real time computation, the
prover is required to compute y =r + se (mod g) in the Schnorr scheme, and
y =r + se(mod p — 1)in our scheme. Using standard algorithms [9, Section 4.3.1],
Schnorr’s scheme would use about log, g + ct log, g bit operations, whereas the
modified scheme takes about log, p + ct log, p bit operations. Hence both the
on-line and off-line portions of the computation require about a factor of
log, p/log, g more bit operations. For the parameters that were suggested, this is
about a factor of 512/140 = 3.6 more computation, but the on-line portion of the
computation is still considerably less than in the Fiat—Shamir scheme.

So far we have only discussed the computational requirements of the prover, for
which the new scheme shifts much of the burden to a preprocessing stage. We should
point out that the computational requirements of the verifier are significantly
greater for our scheme than for the Fiat—Shamir scheme, because in our scheme the
verifier needs to do a full modular exponentiation. For a situation in which the
verifier has more power (as in the case in a smart card talking to a host, or a mobile
station talking to a mainframe computer), this is an advantage. For situations in
which there is a need for bilateral identification, our scheme should perhaps be
replaced by one more suited to a weak verifier.

We close this section with a final comment on the original Schnorr scheme. In
that scheme, y is reduced modulo g before transmission. At first sight it may appear
advantageous to remove the reduction of y modulo q in the original Schnorr scheme
and thus gain a significant computational advantage in the on-line portion of the
computation. In fact, this would be disastrous because if we know r + se and e, then
we can construct an interval of length approximately g/e containing s. An algorithm

of Pollard [15] can then be used to compute s in only about \/ﬁ operations. For
the parameters suggested by Schnorr, the expected value of this is only 2*°.

5. Security of the Modified Scheme

Like all cryptographic schemes, identification schemes can be attacked in a variety
of ways. The purpose of introducing interaction to identification schemes is to
protect against passive eavesdroppers and cheating verifiers recovering secret infor-
mation that they can later use to impersonate the legitimate user. In this section,
we will give evidence which indicates that our scheme does provide such protection.
However, there are other kinds of attacks that might arise in applications that are
not protected against by using an interactive identification scheme by itself.

In particular, Desmedt et al. { 5] have pointed out that an interactive identification
scheme offers no protection against the situation in which the verifier cheats by
passing on information provided to him by the prover to another cheating prover

Furthermore, an interactive identification scheme does not offer any protection
against a prover who gives away his secret information to another so that they may
impersonate him, or against a prover who chooses weak secret keys that anyone
can guess. A variant of this point was discussed by Burmester in the rump session
at Eurocrypt *90.
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Both of these attacks can be protected against if the system uses physical charac-
teristic information to identify uniquely an individual. If the identification by
physical characteristics offers perfect security, then there is no security gained by
using an interactive identification scheme instead of simply using a digital signature
(issued by the KAC) of the physical characteristics. However, if the identification
by physical characteristics offers less than perfect security, then using an interactive
identification scheme can in some cases result in increased total security of the
system. For example, if two people share the same physical characteristics, then a
digital signature of these characteristics could be transferred by a cheating verifier
between these two people. With the use of interaction this will be impossible without
the cooperation of the legitimate prover.

In the remainder of this section, we will consider only the security provided by
the system against passive eavesdroppers and cheating verifiers recovering secret
information that they can later use to impersonate the legitimate user. As in the
original Schnorr scheme, one kind of attack would be to try to construct a pair
(I, «*) and a legitimate signature & of this pair for later use in identification. This
would however require a successful attack on the signature scheme of the KAC.
For this paper, we will assume that the signature scheme of the KAC is secure.

To demonstrate the security of our identification scheme, it remains for us to
show two things:

1. A cheating prover P should not be able to convince a verifier that he (P) knows
a discrete logarithm of v when this is not the case.

2. A (possibly cheating) verifier should not be able to obtain any information
that would later be useful to an imposter.

This first condition is commonly referred to as the soundness [7], [18] of the
protocol. Schnorr proved the soundness of his protocol [17], and with a slight
modification of his proof, we prove the soundness of our protocol in Theorem 1.

The second condition is the property that has inspired the definitions of zero-
knowledge proofs [8] and witness hiding protocols [6]. Neither of these conditions
have been estabished for the Schnorr scheme. We will use the model of witness
indistinguishable and witness hiding to argue that our scheme is secure. In this
paper, we will state only the informal definitions of these concepts, since our
theorems will give statements specific to our protocol. The concepts are described
informally and defined formally in [7]. Informally, a protocol is witness indistin-
guishable if the verifier cannot tell which witness the prover is using, and a protocol
is witness hiding if participating in the protocol does not help the verifier to compute
any new witnesses which he did not know at the beginning of the protocol. Theorem
2 shows that our protocol is witness indistinguishable and Corollary 3 shows that
it is witness hiding. Feige and Shamir [7] have shown that witness indistinguish-
ability implies witness hiding under certain conditions and these conditions are met
by our protocol. However, by proving witness hiding directly instead of using their
general theorem, we are able to describe the exact connection between the security
of our protocol and the difficulty of precise computational problems.

We should perhaps clarify the claim that we are basing the security on two
different problems. We are in fact basing the security of our scheme on the difficulty
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of the following problem:
Given an integer o and a prime p, find discrete logarithms modulo p to the base a.

The point is that if one could solve such a problem, then one could also solve the
following two problems:

Given p, o, and ¢, with o of order g modulo p, find discrete logarithms modulo p to
the base a.
Given p and «, find the order of « modulo p.

These two problems are then the actual problems that we base the security on. The
dependence on factoring comes from the second problem, but note that while a
successful attack on the scheme requires the ability to solve the second problem
(and therefore to factor p — 1), a cryptanalyst will be in possession of some side
information, namely, the knowledge of an element & whose order is the unknown
factor g of p — 1. Whether this information can be used to factor p — 1 faster than
current general purpose factoring methods is unknown. For further information on
the current state of the art in factoring, see [12] or [16], and for information on
computing discrete logarithms, see [10] and [14].
This next theorem establishes the soundness of the identification scheme.

Theorem 1. Let p and o be as described in Section 3. Let x = o" (mod p) for some
integer r. Let A= A, , , . be an algorithm with running time bounded by T that
receives an input e, and attempts to compute an integer y such that «’v® = x (mod p).
If A will produce a correct output for at least £2' of the possible challenges e (where
& > 2'7"), then there exists a probabilistic algorithm that with at least a constant
probability, will compute a discrete logarithm of v in O(log® p + TJe) bit operations.

Proof. This proof is similar to the proof given by Schnorr for Proposition 2.1 in
[17]. Choose random e’s until an e, and e, are found for which A gives the correct
outputs y, and y,. Such a pair e,, e, exists since ¢ > 2! ™. The expected time for this
is O(T/e). Then a¥t™%2 = p®2~°1 (mod p). If (e, —e;, p — 1) = 1, then we use the
Euclidean algorithm to compute f = (e, — e;)"* (mod p — 1). It then follows that
a1 722/ =y (mod p), so that (y, — y,)f is the desired discrete logarithm.

Suppose now that d = gcd(e, — e,, p — 1) > 1. In this case, we set d, =d,
m, =p — l,andfori = 2,...,wecomputem; = m;_,/d;,_, and d; = gcd(e, — e,, m;).
The m;’s will quickly decrease until we come to a point where d; = 1, and we will
still have g|m; since |e, — e,| < g < w. Applying the extended Euclidean algorithm,
we then obtain an integer [ such that l(e, — e;) = 1 (mod m;), and it follows that
(y1 — y,)lis a discrete logarithm of v. It is easy to see that these computations can
be done in O(log® p) bit operations using standard algorithms, O

A conversation between a prover P and a verifier V consists of the public informa-
tion, p, v, a, I, and a triple (x, e, y) where x = a” (mod p) for some integer r chosen
by P from the uniform distribution on the integers in [1, p — 1], e is an integer,
e € [1,2'] is chosen by V, and y is an integer satisfying «”’v® = x which is computed
by Pas y =r + se (mod p — 1). A tape of conversations between a prover P and a



36 E. F. Brickell and K. S. McCurley

verifier V is a sequence of conversations between P and V. In the definition of
conversation, we made no assumption about how the verifier chose e. Therefore, in
a tape of conversations, the verifier is free to use any method in choosing the €’s
and can use any auxiliary input, h, that he has. We use the notation a €, 4 to mean
that a is an element of A chosen at random from the uniform distribution on
elements of A.

We will now proceed with the proof that this identification scheme is witness
hiding unless p — 1 can be factored.

Theorem 2. The distribution of a tape of conversations between P and V does not
depend on which discrete log of v is known by P.

Proof. Let h be any auxiliary input that V has. The prover has an s such that
o~ = v(mod p). Let s’ = s (mod q) and s” = s (mod (p — 1)/g). s’ is uniquely deter-
mined by v, but there are (p — 1)/g distinct choices of s” for each v, corresponding
to the (p — 1)/q different discrete logarithms of v. It suffices to show that the
distribution of a tape of conversations between P and V does not depend on 5”. To
do this, we will show that each conversation does not depend on s” and, furthermore,
that the distribution of each conversation, given h and all of the previous conversa-
tions on the tape, does not depend on s”. The proof will be by induction on the
number of conversations.

To initiate a conversation, P will pick r €, [1, p — 1]. Let v’ = r (mod g) and
r" = r (mod(p — 1)/q). The distribution of r’ is uniform on the set of equivalence
classes modulo ¢, and the distribution of r” is uniform on the set of equivalence
classes modulo (p — 1)/q. It follows that the distribution of the x = a” (mod p) that
P produces is uniform on the subgroup of residue classes generated by o. It is also
easy to see that x does not depend on either h, ", s” or on previous conversations
on the tape.

The &’s that V picks to send to P can depend on h, v, o, x, and all of the previous
information already on the tape of conversations, but since (by induction) every-
thing on the tape up to that point did not depend on s”, and since V does not have
access to s”, the distribution of e, given h and all of the previous conversations on
the tape cannot depend on s” either. Moreover, the e that V chooses cannot depend
on r”, since V has not yet seen anything that contains any information about it.
Since P chose r randomly, it follows also that the value of r” does not depend on
e, h, and the previous information on the tape.

When P receives e from V, he computes y=r + se (modp —1). Let y' =y
(mod g) and y” = y (mod(p — 1)/g). Clearly y’ depends on ', s', e, and g, but does
not depend on s”. On the other hand, y” = r” + s”e (mod(p — 1)/g), but r” does not
depend on any of the previous communication. Therefore, r” completely masks the
value of s”, and the distribution of y” is uniform on the equivalence classes modulo
(p — 1)/q. Thus, the distributions of both y’ and y” (even given h and all of the
previous conversations on the tape) do not depend on s”, which implies that the
same is true for the distribution of y, from which the conclusion of the theorem
follows. O
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We will now use these two theorems to show that if an impostor has a reasonable
chance of success at passing himself off as P, then P together with the impostor
could factor p — 1.

Corollary3. Let A be an algorithm that has access to a tape of conversations between
P and any V. Suppose that A selects x, then receives an input e, and tries to produce
an output y such that a’v® = x (mod p). If A has running time T and will produce a
correct output for at least €2' of the possible challanges e € [1, 2], where ¢ > 217,
then there exists a probabilistic algorithm that uses A and P that will discover a
nontrivial factor of p — 1 in time O(log® p + T/e) with probability at least 1 — 2/w,
where w is the largest prime factor of (p — 1)/q.

Proof. It follows from Theorem 1 that in the expected time of O(log® p + T/e) bit
operations, 4 will compute a discrete logarithm a of v. Since the tape of conversa-
tions does not depend on which discrete logarithm P knows, a does not depend on
s”. Furthermore, P initially chose s randomly, and hence a + s is a random integer
multiple of g, with (a + s)/q uniformly distributed on [(a + 1)/q, (@ + p — 1)/q]. Let
d =(a +s,p— 1). Then q|d. If w is a prime factor of (p — 1)/q, then the probability
that w divides a + s is exactly

1 -1
#{n: w|n,ne[a+ ,f*‘P—J}
q q
{ [a+1 a+p—1]}
#<in:ne y ————
q q

Therefore, Pr((d, w) = 1) > 1 — 2/w, and if (d, w) = 1, then d is a nontrivial factor
of (p — 1)/gq. O

2
<-—.
w

6. Comments

For our modification of Schnorr’s scheme, we have proved that if an impostor has
a reasonable probability of success, then there is an efficient algorithm for factoring
p — 1. Furthermore, it is easy to see that even if p — 1 is factored, then the security
of our scheme becomes the same as the security of the Schnorr scheme.

Our identification scheme can be converted into a signature scheme using the
same techniques that were introduced by Feige et al. [6] and also used by Schnorr
[17]. To be more precise, let f be a one-way hash function. To sign a message, m,
the prover selects x as in the identification scheme. Instead of the verifier choosing
e, P computes e = f(x, m). The remainder of the signature scheme is the same as the
identification scheme.

An interesting modification to our scheme is to choose « to be a generator of the
multiplicative group (mod p), i.e., an element of order p — 1. The rest of the protocol
would work as before. In one sense, this appears to be more secure since we are no
longer revealing an element of order g. We were able to modify the proof of Schnorr
[17] to prove that if an impostor could be successful, then he would have learned



38 E. F. Brickell and K. S. McCurley

the discrete logarithm of v (if 2 is the only prime factor of p — 1 that is smaller than
2'). However, as with the Schnorr scheme, we could not prove that a verifier could
not learn something about the discrete logarithm of v. Therefore, it is not clear
whether choosing « to be an element of order p — 1 increases or decreases the
security of our scheme.
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