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The Discrete Logarithm Problem

KEVIN S. McCURLEY

ABSTRACT. There are numerous cryptosystems whose security is based on
the difficulty of solving the discrete logarithm problem. This paper is a survey
of the discrete logarithm problem, including the current state of algorithms
for solving it, complexity issues related to the discrete logarithm problem,
and applications to cryptography.

If the theory of numbers could be employed for any practical
and obviously honorable purpose . .. then surely neither Gauss
nor any other mathematician would have been so foolish as to
decry or regret such applications.
— G. H. Hardy, A Mathematician’s Apology, 1940

1. Introduction
We begin with a succinct statement of the computational problem that is
the object of study in this paper. Let G be a group (written multiplicatively),
and for g € G, let (g) be the cyclic subgroup generated by g. The discrete
logarithm problem for the group G may be stated as:
Given g € G and a € (g), find an integer x such that

g =a.
Such an integer x is the discrete logarithm of a to the base g, and we shall
use the notation x = ind ¢4 (another word for discrete logarithm is index).
Note that ind oy is only determined modulo the order of g. There are some
subtleties to the precise statement of the problem, which we shall return to
later in §3.

This paper is not intended as a completely comprehensive treatise on the
discrete logarithm problem. Rather, it is intended to serve as an introduction
to the subject for those merely interested in learning about applications of
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number theory, and for those seeking research problems in computational
number theory. In this paper we shall cover some algorithms for solving the
discrete logarithm problem, some complexity issues related to the problem,
and some applications to cryptography.

At this time I would like to offer my thanks to Andrew Odlyzko and Carl
Pomerance for suggesting corrections and improvements to an earlier version
of this paper. I would also like to thank Jim Hafner for some helpful and
interesting conversations during the writing of this paper.

2. Applications to Cryptography

The origin of using the discrete logarithm problem in cryptographic
schemes goes back to the seminal paper of Diffie and Hellman [21]. It is
there that they proposed the discrete logarithm problem as a good source for
a “one-way function.” A formal definition of a one-way function is beyond
the scope of this paper (and not universally agreed upon!). Informally we
may think of a one-way function as a function f : X — Y for which it
is easy to compute f(x) given x € X, but given y € Y, it is difficult to
compute a value x with f(x) =y, at least for most values of y.

In the paper of Diffie and Hellman, they proposed as a natural candidate a
function based on exponentiation modulo a prime. Let p be a large prime,
and let g be a primitive root modulo p, i.e., a generator of the multiplicative
group GF(p)". We can then define a function f:{l,... ,p— 1} —» GF(p)”
by f(x) = g"(mod p). It is easy to see that this function is relatively easy
to compute, by using the binary expansion of x. Let x = Zfzo el.2’ with
€,=0or 1. Then

g=[]& (modp).
€=l
By repeated squaring and multiplication, we can easily compute the right side
using at most 2k multiplications modulo p . (See [32, §4.6.3].) On the other
hand, inverting the function f clearly requires an algorithm for the discrete
logarithm problem in GF(p)®, and this is widely thought to be intractable
for large p.

To see how such a one-way function can be used in cryptography, we give
two examples. Apparently the first application of one-way functions in cryp-
tography is due to Needham (see [65, p. 91]), who used them to devise a
secure method for storing passwords in multiuser computer systems. Most
such systems incorporate into their operating systems a method for authen-
ticating users, usually through a password that is known to the user. If the
computer system stores the passwords of all the users in a file, then this file
must be heavily protected. In particular, the system resources can easily be
compromised by an unscrupulous systems programmer. One way around this
is to store not the passwords themselves, but rather the values of a one-way
function applied to the passwords. When the user types in the password,
the function is applied to the password and compared to the value stored in
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the file, with login allowed if the values match. The file itself is, however,
quite useless to an intruder. One-way functions are in fact used in a manner
similar to this in both the UNIX' and VMS? operating systems.

The second and possibly the most important example of a cryptosystem
based on the difficulty of computing discrete logarithms is due to Diffie and
Hellman [21]. This is a method for two users to agree on a secret crypto-
graphic key (string of bits) using only an insecure channel of communication.
Before the discovery of public key systems, traditional cryptosystems required
that the two parties wishing to communicate meet beforehand to agree upon
a secret key. This severely limits the spontaneity of secure communication,
and may require a courier. The Diffie-Hellman key selection protocol elimi-
nates this problem. To describe it, we assume that two users, A and B, wish
to agree upon a key. Through any means of communication, they first choose
a group G and an element g € G. There are several requirements that the
group should satisfy for security reasons, but to begin with, it should have
the property that it is easy to compute the product of any two elements in
the group, and there should be an easy way of identifying group elements
with keys. In the original Diffie-Hellman paper, they used GF(p)" for a
large prime p, so that there is a natural way of identifying group elements
as positive integers.

The key construction between the two parties A and B (Anna and Boris?)
proceeds as follows. Let M be a large integer (say > 10% ).

- A chooses a random integer x with 0 < x < M , computes g , and
sends the result to B, keeping x secret.

— B chooses a random integer y with 0 <y < M, computes g’ , and
sends the result to A, keeping y secret.

- Both A and B construct the key from g*’, which A computes from
(g”)", and B computes from (g*)’ .

If this scheme is to be secure, then the problem of computing g™’ from
knowledge of g, g*, and g’ should be intractable. We shall refer to this
problem as the Diffie-Hellman problem. Clearly, if one can solve a generic
instance of the discrete logarithm problem, then one can also solve the Diffie-
Hellman problem. It remains an open question whether the converse is true
(but see §3 for further discussion).

The Diffie-Hellman scheme has found widespread use in practical cryp-
tosystems, as for example in the optional security features of the NFS file
system of the SunOS? operating system. One of the often-cited disadvantages
of public key systems is that they require significantly more computational
power than traditional private key systems such as the Data Encryption Stan-
dard (known as DES). The Diffie-Hellman scheme has the nice propertv that

'UNIX is a trademark of AT&T Bell Laboratories.
2VMS is a trademark of Digital Equipment Corporation.
3NFS and SunOS are trademarks of Sun Microsystems, Inc.
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a very fast scheme such as DES can be used for the actual encryption, yet it
still enjoys one of the main advantages of public key cryptography.

It should be mentioned that there are numerous other cryptosystems that
are based on the difficulty of the discrete logarithm problem, including those
described in [6], [8], [11], [14], [15], [17], [22], [27], [30], [34], [37], [47], [52],
and [58]. Yet another example is also given in the accompanying introductory
paper by Carl Pomerance.

3. Computational Complexity Issues

If we wish to discuss the security of cryptosystems against computational
attacks, then we are naturally led to a discussion of what is a feasible compu-
tation. The field of mathematics that deals with this is known as computa-
tional complexity theory, and the connections to cryptography are described
in more detail in the accompanying paper by Shafi Goldwasser. In this sec-
tion we shall briefly survey some complexity issues involving the discrete
logarithm problem.

One of the first things that deserves attention is the statement of the prob-
lem itself. First of all, it should be noted that it makes sense to talk about
the discrete logarithm problem in an arbitrary semigroup, although in most
applications the interest is in specific examples of finite cyclic groups.

In the statement of the problem given in §1, we specifically excluded the
possibility that @ might not be in the cyclic group generated by g. An
alternative way to state the problem is:

Given a, g € G, determine if there exists an integer x such
that g* = a, and if so, find such an x.

Note that this formulation of the problem might be harder to solve. It
can also make a difference if we are analyzing an algorithm for solving the
discrete logarithm problem, since we may need to know that a € (g) in
order to carry out the analysis. Henceforth we shall assume that our group
G is cyclic, with G = (g), so that we may use the original statement of the
discrete logarithm problem.

We should also be careful to make clear exactly what we mean when we say
that we are “given the group G.” Groups may arise in quite a few different
abstract forms, for example, as the class group of an imaginary quadratic field,
given by the discriminant, or the group of points on an elliptic curve over a
finite field (or Q), given by the equation of the curve and the specification
of the field, or the Galois group of a polynomial, or a finite abelian group
given by generators and relations, or a finite abelian group given by invariant
factors. Rather than focus on such abstract issues, let us make the following
assumptions about our group G:

- We know efficient algorithms for testing equality of group elements.
— We know an efficient algorithm for multiplying any two elements of
the group.
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- The group is finite, generated by g, with known order n.

The first assumption is intended to deal with the case where the group is
given as a set of equivalence classes (as in a class group), since it may be quite
a complex problem to decide if two objects belong to the same equivalence
class. The need for the second assumption is fairly obvipus, since we need an
efficient algorithm for multiplying in the group if we are to use exponentiation
in the group as the source of a one-way function.

It is probably less obvious why we should assume that the order of the
element g is known. The reason for this is in fact rather simple, namely that
any algorithm for computing discrete logarithms can be used to calculate the
order of the base element g . To see why, assume that we are in possession of
an algorithm to compute discrete logarithms to the base g, and for simplicity
assume that the algorithm returns the logarithm from the interval [1, n],
where n is the order of g. To compute n, we first choose an integer m
that we think exceeds n, or if we have no idea we simply choose m = 1. We
then choose 4 random integer y, € {m, ... , 2m}, and compute a = g°.
Next we use the discrete logarithm algorithm to compute x, = ind g@- It
follows that x, — y, is a multiple of the order of g, and we initially set
ng = xo— Y. If m was initially chosen less than »n, then n, will be
zero, but this can be remedied by simply doubling m until a nonzero one
is found. Note that since y, was randomly chosen, it follows that n, will
be nearly uniformly distributed among the multiples of » in the interval
[m—n, 2m+n]. We repeat the process to compute another random multiple
n,,andset n, = ged(ng, n;). By taking the gcd of several random multiples
of the order of g, we will very probably produce the order itself. Further
discussion of this may be found in [4] and [46].

The field of computational complexity has as its goal the classification of
computational problems according to their difficulty. The fact that a discrete
logarithm algorithm can be used to compute the order of the base for the
logarithms is an example of a random polynomial time reduction between
two computational problems. Such reductions may be viewed as inducing
a partial ordering on the set of computational problems according to their
complexity, and can provide useful information on the intrinsic difficulty of
a problem. In this case, we find that it is at least as difficult to compute
discrete logarithms to a given base as it is to compute the order of that base
in the group.

An interesting consequence of the preceding discussion is that it may be
advantageous to choose a cyclic group for which the problem of computing
the order is thought to be very difficult. For example, it is possible to design a
Diffie-Hellman key selection system for which factorization of a large integer
is required to break the system. The details of this may be found in [46],
but the basic idea is to choose a subgroup of (Z/nZ)” with n = pq being a
product of two large primes of a special form. Using this choice, it is possible
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to prove that breaking the system requires the ability to factor n as well as
break the scheme in the groups GF(p)* and GF(q)". Hence the system will
remain secure if either of two presumably hard problems is in fact difficult
to solve. A similar property is enjoyed by the system described in [14], where
the cryptanalysis of the system requires computing the class number of an
imaginary quadratic number field.

We should keep in mind that breaking the Diffie-Hellman key selection
scheme may not in fact require the computation of any discrete logarithms.
In §2, we pointed out that breaking the Diffie-Hellman scheme requires a
solution to the Diffie-Hellman problem:

Given a, b, and g€ G, find g, where a=¢g" and b=g".

Clearly, if we can compute either x or y, then we can compute g° and
thereby solve the Diffie-Hellman problem. It is not clear whether the re-
verse implication is true, namely whether an algorithm for solving the Diffie-
Hellman problem can be used to compute discrete logarithms. Bert den
Boer [9] recently proved that if ¢(p — 1) has all small prime factors, then
the two problems are in some sense equivalent for the group GF(p)*. The
general problem remains open, however, and it might be the case for some
groups that the Diffie-Hellman problem is easier because there is an efficient
algorithm for solving it yet to be discovered. A similar situation exists for
the RSA cryptosystem, in which the decryption of an individual cyphertext
¢ requires the ability to solve the congruence x° = ¢ (mod n) for x when
given ¢, n,and e satisfying gcd(e, ¢(n)) = 1. At present there is no proof
that the ability to solve the congruence requires the ability to factor n.

Another point that we should take note of is the fact that if we can solve
the discrete logarithm problem using one base g, then we can also solve
the discrete logarithm problem for the base &, provided /4 belongs to the
cyclic subgroup generated by g . This can easily be seen from the fact that
if a € (h), then

indga = indgh -ind,a (mod n),
where n is the order of g.

Yet another interesting topic concerning complexity and the discrete log-
arithm problem concerns the security of individual bits of the discrete log-
arithm. The motivation for this investigation is the fact that while it may
be difficult to calculate the entire discrete logarithm, it may be very easy to
determine some of the bits of the discrete logarithm. On the other hand, for
applications to cryptography, we would ideally like to prevent the cryptana-
lyst from discovering any partial information.

In fact it is very easy to give an example where some of the bits of the
discrete logarithm are easy to find. If # is even, then it is easy to see that
ind g4 is even if and only if a is a square. Moreover, we can easily determine

if a is a square in the group since a is a square if and only if a"? = 1, (for
G = (Z/pZ)* we can also use quadratic reciprocity). Hence we can easily
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determine the least significant bit of ind_a in the case that n is even. In
§4.2 we shall describe a complete discrete logarithm algorithm based on this
approach.

Given that some of the bits can be easy to calculate, the question now
arises as to which of the bits of the discrete logarithm are the most difficult
to calculate, or perhaps more naturally how to extract secure bits from the
discrete logarithm. Research in this area has been carried out by Blum and
Micali [8], Peralta [53], and Long and Wigderson [43]. In their seminal paper,
Blum and Micali defined the notion of a “hard predicate” for a one-way
function, and showed the existence of such a predicate for exponentiation
modulo a prime. Let f:.S — S be a one-way function. Then a Boolean
predicate B:S — {0, 1} is said to be hard for f if an oracle for B(f(x))
allows one to invert f easily (the oracle may even be probabilistic with only
a slight advantage in predicting B(f(x)) ).

For a prime p and primitive root g, define B :(Z/pZ)" — {0, 1} by

B(a):{o, %f IS%ndgaS(p 1)/2
1, if (p-1)/2<ind,a<p-1L
It is rather easy to verify that an oracle for B(-) can be used to construct
a simple algorithm for computing discrete logarithms. Blum and Micali [8]
went even further to show that any oracle with a nonnegligible advantage
in predicting B(-) can also be used to compute discrete logarithms. In this
way they were able to prove that predicting this single bit from the discrete
logarithm is essentially as difficult as predicting the entire discrete logarithm.

Peralta [53] and Long and Wigderson [43] later independently proved that
there exists a constant ¢ with the property that one can extract at least
cloglogp bits from the discrete logarithm that are simultaneously secure
(see the original papers for details). These results remain the best that are
known, and it is an interesting open question whether one can extract clogp
simultaneously secure bits for some constant ¢. Schrift and Shamir [60]
recently took a step in this direction, but their results show a relationship
between factoring a composite and computing individual bits of the discrete
logarithm modulo the composite.

I have not completely exhausted the subject of computational complexity
as it relates to the discrete logarithm problem. Some further interesting top-
ics involve connections to other problems, such as the word problem in group
theory, zero knowledge proofs [6], [17], [43], and others [10]. Further discus-
sion on the complexity of other number theoretic problems can be found in
[2], [5], and [24].

4. Algorithms for the Discrete Logarithm Problem
In any discussion of algorithms for computing discrete logarithms, we
should make a distinction between algorithms that are designed to be prac-
tical and those that are structured in such a way as to allow a rigorous proof
of their behavior. Consider for a moment the case of computing discrete
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logarithms over GF(2k)* . For this problem, the algorithm with the fastest
asymptotic running time is due to Coppersmith [18], but this is based on a
heuristic analysis, and it remains an open problem to rigorously analyze its
running time. The algorithm that has the asymptotically fastest rigorously
proved running time is due to Pomerance [56], but this algorithm probably
will not be competitive in practice.

It is also possible that the algorithm with the fastest asymptotic running
time estimate may not be an ideal choice for implementation. In the design
of practical algorithms, there are many issues involving hardware and soft-
ware that will affect which algorithm will work the fastest. When a person
is designing an algorithm that is actually to be implemented, a 50 percent
improvement in the running time of the algorithm is sometimes significant,
but if the goal is to prove a theorem of the form “the running time is 0(n3)
for an input #,” then a 50 percent improvement in the running time will
disappear into the implied constant and is of no value.

All of the known algorithms for solving the discrete logarithm problem
may be placed into one of three categories. First are the algorithms that work
for arbitrary groups, that is, those that do not exploit any specific property
of the group. Next we have algorithms that work well in finite groups for
which the order of the group has no large prime factors. Finally we have
algorithms that exploit methods for representing group elements as products
of elements from a relatively small set. In the subsections that follow we
shall describe the basic ideas behind each of these methods. The emphasis
will not be on giving the absolute best versions of each type of algorithm,
but rather to illustrate the ideas involved and give further references. For
simplicity we shall assume throughout this section that g € G is the base for
which we wish to compute discrete logarithms and that g has known order
nin G.

4.1. Algorithms for general groups. In this section we shall describe al-
gorithms that work in the absence of any extra information concerning the
group. The most obvious algorithm is simply to build a table containing all »n
powers of g and to simply look up group elements in the table to find their
discrete logarithms. This evidently takes at least n operations to compute
the table, and O(n) space to store the table. The goal of any algorithm is to
improve on these bounds.

The first improvement on the most obvious algorithm reduces the running
time to O(nl/ 2 logn) and the space requirement to O(nl/ 2) group elements.
The method is attributed to Daniel Shanks and is described in [33, pp. 9, 575-
576]. For this algorithm we shall require an enumeration of the elements of
G, or more specifically an easily computable injective function f : G —
{1, ..., n}. (Such a function might also be used in the Diflie-Hellman key
selection procedure to construct keys from group elements.) For every a €
G, we may take ind ¢4 asan integer in the interval [1, n], which means
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that ind g4 has a decomposition in the form mgq — r, where m = [nl/ 2] ,
0<r<m,and 0 < g < m. In order to compute indga, it suffices to
compute r and ¢, and we can do this as follows. We first compute the sets

S={(, f(ag'), i=0,...,m}

T={@, f(g™), i=0,...,m}.

We now sort both sets according to the second entries of the elements and
run through the sorted lists to find elements s € § and ¢ € T that agree in
the second coordinate. From the first entries of these two elements we get
ag' =g™,s0oa=¢g"".

Using well-known sorting algorithms, we can sort the sets S and T in
O(mlogm) operations (see [33, Ch. 5] or [3, Ch. 3]). Hence this gives an
algorithm for computing discrete logarithms that uses O(nl/ 2 logn) time and
storage space for O(nl/ 2 ) group elements.

Interestingly enough, Shanks’ algorithm will work even if # is only an
upper bound for the order of the group element g. We can even do away
with the need for the upper bound since we can simply pick an integer n to
use, and if the bound turns out to be too small, then we simply keep doubling
it and repeating the steps until the answer is found. It therefore follows from
the discussion of §3 that Shanks’ algorithm can also be used to calculate the
order of g in time O(nl/ 21ogn). (This is in fact the purpose for which
Shanks originally presented the idea in [61].)

Shanks’ algorithm should be regarded as being mostly of theoretical inter-
est, since there is a very practical algorithm due to Pollard [55] that seems
to have essentially the same running time and a much smaller space require-
ment. We pay for this improvement in two ways. First, the algorithm really
does require the order of the group rather than just an upper bound, and
second, we give up our rigorous proof of the running-time bound. There is,
however, still a heuristic argument to support the conjectured running-time
estimate.

In the first stage of the algorithm, we compute integers s and ¢ such that

(4.1) a=g.
The procedure for doing this will involve the construction of a sequence of
group elements x,, x,, ... . We begin by partitioning the group G into three

roughly equal-sized sets S, , S,, and S;. Define x, =1, and
ax; forx, €S,

(4.2) Xy = xi2 for x; € S,,
gx; forx;, €S,

This defines a sequence of integers a; and b; for which x;, = a® gb" . The
rules for calculating @, and b, are easy to deduce from (4.2), namely that
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a,=b,=0,

a,+1(mod n) forx;, €S,
(4.3) a;., =4 2a;(mod n) for x, €5,,

a; for x; € 53,
and similarly

b, for x; €S,
(4.4) b, =4 2b,(mod n) for x; € S5,,

b, + 1(mod n) for x; € S;.

If the sets §; are chosen more or less randomly, then the sequence Xx;
should behave more or less as a random walk through the group G. More-
over, if the sequence x; were a random sequence of elements of G, then

we should expect that there exists an integer [ < 3n'? such that X, =
X,; (see [55]). Such an integer may be found by computing the sequences
(x;,a,;,b,, Xy, a,;, by,) recursively using the rules (4.2), (4.3), and (4.4).
If we find that x; = x,,, then this gives us the desired equation (4.1) with
s=a;—a,(mod n) and ¢=b,, —b,(mod n).

If we are lucky and gcd(s, n) = 1, then we simply compute an integer
u such that us = 1( mod n), and then we have a = g“t, so that indga =
ut( mod n). If we are unlucky and find that ged(s, n) =d > 1, then we can
still recover the answer without too much more work. We use the extended
Euclidean algorithm to construct integers # and v such that d = us +vn.
It follows from (4.1) that a® = g“. Since the left side is a dth power, it
follows that u¢ is divisible by d, giving an equation of the form at = gdk .
From this we obtain a = gk+(i"/ 9 for some integer i with 1 <i<d. We
can now compute the discrete logarithm by simply checking the equation for
i=1,2,... until the correct value is found. Note that if s were a random
residue moduio 7, then we would expect large values of d to be rare, so
that the dominant factor of the running time usually comes from the time to
find i.

It should be noted that up until very recently (see §7) the preceding algo-
rithms were the only ones known for the case where G is the group of points
on an elliptic curve over a finite field. For this reason, these groups have been
suggested as good candidates for use in discrete logarithm cryptosystems (see
[34], [36], and [49]). It has also been suggested to use Jacobians of higher
dimensional abelian varieties [35].

4.2. Algorithms for groups with smooth orders. A positive integer is called
smooth if it has no large prime factors, or more specifically, it is called y-
smooth if it has no prime factors exceeding y. In this section we shall
describe an algorithm that works well in the case that the order of g is
smooth. The algorithm described here was discovered by S. Pohlig and M.
Hellman [54], and independently by Roland Silver.
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Let g have order n as before, and let

Kk
(4.5) n=pr", P < <Dy

Because 1nd a is only determmed modulo », we can then compute it by
the Chinese remamder theorem if we can compute it modulo p . For sim-

plicity of notation, let p be a prime with p° | n and pc+1 fn,and let x =
ind ¢ a( mod p°). In order to determine x, it suffices to calculate bj with

1

4

J
bjp , Osbj<p.

~.
Il
=)

Note that ind gd=X+ p°t for some integer ¢, so that

nip _ gnx/p+npc_'t

a
nZ/ =0 J
_ gnbo/p.
In order to compute b, we first calculate a"” and ¢ = g"P. We then
compute {’ for i =0, ... until we find b, =i with {' =q"".
If ¢ > 1, then we can compute b, as follows. We first compute h =
g_1 = g”_1 . We now set a, = ah® and note that
n/p nz} b’
a
=¢h
We now simply search through the powers of { until the proper value of b,
is found. Continuing in this manner we can calculate b, ... , b,.

We now estimate the number of group operations required for the algo-
rithm. For n given by (4.5), the number of group operations to calculate
ind, a( mod pf") can easily be shown to be

k
0 (Z ¢;(logn +pi)) :
i=1

provided we use the fast exponentiation method described in [32, §4.6.3].
Once this is done, the Chinese remainder theorem can be applied to derive
the final value of ind g4 (For a complexity analysis of the Chinese remainder
theorem, see [3, §8.6 and 8.11].) It should be noted that there is a way to
reduce the number of group operations by increasing the storage space, using
the method of Shanks described in §4.1 to speed up the search for the correct
powers of {. With this change, the running time is reduced to

k
o (Z ¢;(logn + p;” logpi)>

i=1
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group operations, but the storage space increases to O(p,i/ 2) group elements.
The details for this appear in [54].

The Silver-Pohlig-Hellman algorithm shows that we should avoid groups
for which the order has all small prime factors. For example, if the group is
GF(2k)* , then we should check the factorization of 2¥ — 1 to see that it has
at least one large prime factor. Partial factorizations of 2¥ — 1 have been
computed for k < 1200 [12], which should cover most of the values that are
interesting for practical applications in the near future.

ExaMpLE. Consider using the multiplicative group of the finite field
GF(2324) , which has order 2%%* _ | . This is an extremely bad choice, since
here the order of the group factors as

2% _1-3°.5.7.13.19-37-73-109- 163
.2593.71119- 87211 - 135433 - 246241 - 262657
.279073 - 3618757 - 97685839 - 106979941 - 168410989
-272010961 - 4977454861.

Since the largest prime factor in the order has only ten decimal digits, it is
quite feasible to compute discrete logarithms using the Silver-Pohlig-Hellman
algorithm.

If one is selecting a group of the form GF(p)* for a prime p, then we need
to choose a prime p for which p—1 has at least one large prime factor. This
can be easily carried out by simply choosing a large prime ¢ and selecting p
as the smallest prime in the arithmetic progression 1( mod g). A heuristic
argument of Wagstaff [62] suggests that we will probably find such a prime
before we examine the first log2 g numbers in the arithmetic progression.
For more information on how to efficiently determine if a large integer is
prime, see the accompanying paper by A. K. Lenstra. It should be noted that
for a prime constructed in this way, it is easy to find a primitive root modulo
p (an example is given in §6).

5. The Index Calculus Method
In this section we discuss a class of algorithms that work very well when the

group is endowed with a special structure. The approach is commonly known
as the index calculus method, and apparently first appeared in the work of
Kraitchik [38, pp. 119-123], [39, pp. 69-70, 216-267]} and Cunningham (see
[63]). The method was later rediscovered and analyzed by Adleman [1],
Merkle [48], and Pollard [55]. In contrast to previous techniques, the index
calculus method is probabilistic rather than deterministic.

In order to give a general description of the technique, let p;, ..., p, be
elements of G, and let G be generated by g and of order n. The algorithm
has three stages. In the first stage of the algorithm, we gather identities of
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the form
m a b
(5.1 Hpj.”:g‘)
j=1
This set of identities can be interpreted as a set of linear congruences

m
(5.2) Zaij ind, p; = b, (mod n).
j=1
In the second phase we solve the system for the ind e P After these two
initial stages, we compute individual logarithms in the third stage. In order
to compute ind 4> We construct a relation of the form

(5.3) [1r7 =as’,
=1

from which we obtain ind, a = }::.":1 e;ind, p; — e. Note that the first two

stages comprise a precomputation stage, after which we need only carry out
the third stage for the calculation of individual logarithms. In practice this
third stage takes considerably less time than the first two stages.

The reason that the index calculus method is not a general method is that
it is not obvious how to generate the relations (5.1) for a general group in
an efficient manner. At present such a method is only known for some finite
fields and class groups of imaginary quadratic number fields. In the sections
that follow, we shall describe the basic methods when applied to finite fields
GF(p) for a prime p and GF(2k) . For the description of the algorithm in
class groups, see [45], and for a discussion of the algorithm as it applies to
other classes of finite fields, see [29] and [23].

5.1. Finite fields GF(p). Curiously enough, the reason that the index
calculus method works well in GF(p)" is that the problem of factoring is
easy for many integers. In particular, if all of the prime factors of an integer
k are less than a given bound ¢, then we can completely factor k with at
most ¢ + logk divisions.

In the index calculus method for GF(p)", we take Pyseer s Dy 1O be the
first m primes. We begin by describing the generation of relations in stage
one. For this, we first choose a random integer b € [1, n] and compute the
least positive integer r with r = gb( mod p). We then try to factor r as a
product of the first m primes, using, for example, simple division by these
primes. If r factors in this way, then we obtain a relation of the form (5.1).

It is evident that the bigger we choose m, the greater the chance that
r will factor as a product of the first m primes. On the other hand, as
m increases, the work to solve the system of equations in the second stage
increases, and the work done to factor residues in the first stage increases.
In order to optimize the running time of the algorithm, we need to balance
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these constraints. We now sketch an argument concerning the running time
of the algorithm.

If b is chosen from a uniform distribution, then the probability that r
will factor as a product of the first m primesis w(p, p,,)/p, where w(x, y)
is defined to be the number of positive integers < x that have no prime
factors exceeding y . The asymptotic behavior of the function y has been
extensively studied, and in particular it is known that (see [16])

w(x,y)=xexp((—1+o(1))ulogu),

where u = logx/logy, for u — oo and y > logzx. If we choose p,, ~
L(p)°, where ¢ is a constant and

L(p) = exp(y/logploglogp),

then the probability that r has all prime factors among the first m primes
is L(p)—l/ (29)+o(1) " Hence we should expect to generate a relation of the
form (5.1) after we try L(p)"/®9*°") values of b, and generating 2m such
relations should take about

2mL(p)l/(26)+o(l) _ L(p)c+l/(2c)+o(1)

values of b. If we use trial division to do the factoring, then for each b it
will take at most m + logp divisions to decide if it gives us a relation, so
that we have a total running time for the generation of relations in the first
stage of L(p)2c+1/(2c)+o(1) '

Once we have generated 2m relations (or any amount slightly larger than
m ), it is reasonable to expect that the corresponding system of 2m equations
in m unknowns should have full rank, so that we can solve for the ind oy
(Here when we say full rank, we mean full column rank modulo ¢ for every
prime g dividing p—1.)

The problem of solving a system of linear congruences presents no serious
difficulties, but there are a few points that deserve comment. Consider the
problem of solving the system

3x, +7x, =0 (mod 42),
2x, — 3x, =2 (mod 42).

Note that none of the coefficients are invertible modulo 42, and it is impos-
sible to add a multiple of one row to another in such a way as to introduce a
zero entry (as we might if we tried Gaussian elimination). On the other hand,
the system has the unique solution x, =28 (mod 42), x, = 18( mod 42).
Let us now describe a method for solving systems of linear congruences.
Suppose we want to solve Ax = b(modp — 1), where 4 is kK x m with
rank(4 mod q) = m for every prime ¢ dividing p — 1. One technique
is as follows. First factor p — 1 as a product of prime powers. Then for
each prime ¢ dividing p — 1 we solve the system modulo g using Gaussian
elimination (note that Z/qZ is a field). We then use Hensel’s method to lift

(5.4)
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the solution modulo ¢ to a solution modulo the power of ¢ dividing p—1.
Finally we use the Chinese remainder theorem to combine the solutions for
a solution modulo p — 1. It turns out, however, that the factorization of
p—1 is not needed to solve the system and should probably be avoided. One
alternative is to proceed as if Z/(p — 1)Z is a field and attempt to perform
Gaussian elimination in the usual manner. This can, however, break down if
we find a column in which no entry is invertible modulo p — 1 (as in (5.4)).
It is possible to describe a method to recover from this using the Chinese
remainder theorem, the Euclidean algorithm, and Hensel’s method, but the
details are somewhat tedious so we shall adopt another strategy.

In standard Gaussian elimination, we would search the j th column of the
matrix to find an entry that is invertible modulo p — 1, exchange rows to
bring it into the jj location, and add a multiple of the j th row to the rows
below it to introduce zero entries. An alternative procedure is as follows:
search the jth column to find an entry that is nonzero, and exchange rows
to bring it into the jj th location. Then, in order to introduce a zero into the
ij th location, we first use the extended Euclidean algorithm (see [32, §4.5.2])
to find integers g, r, and s for which g = gcd(a[j , ajj) =ra;+sa;;. We
then replace row j of the matrix A by r-(row i)+s-(row j), and replace
row I by (aij/g)~(row j)—(ajj/g)-(row i ). This operation on the system
preserves the solution set and has the effect of replacing the jjth entry by g
and replacing the ij th entry by 0.

If we use this approach, the solution of the system of equations will take
0(m3) operations modulo p — 1, and 0(m2) applications of the extended
Euclidean algorithm. Hence the total expected time for stages one and two
to solve for the indg p; ’s is

L(p)20+l/(2c)+o(l) + L(p)3c+o(l)

operations on integers of size p. Since each such operation can be done
in L(p)"(l) bit operations, we get the same number of bit operations. By
choosing ¢ = 1/2 we get a running time for the first two stages of L(p)2+”(1)
bit operations.

It is in the third stage where we compute individual discrete logarithms.
In order to compute ind 4> We choose a random integer e, compute r =
ag’(mod p), and see if r factors as a product of the first m primes. If we
obtain r =[]}, pj-’ , then this implies

m
mdga = Zej indgpj —e(modp — 1).
j=1
The third stage can be analyzed in the same manner as before, giving an
expected running time of L(p)*"'/?9*V or L(p)**°W

5.1.1. Rigorously analyzed versions. While the discussion in the preceding
section gives a flavor for the subject of the index calculus method in GF(p)*,
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there were several issues left unresolved. The first of these is the fact that
we ignored the issue of why the set of equations should have full rank. If
the procedure is modified slightly then this can be rigorously proved; for
the details see the paper of Pomerance [56]. There are also several ways in
which the running time can be improved. One of these is to use a faster
method for doing the factorizations. If we use a rigorously analyzed version
of H. W. Lenstra’s elliptic curve method, then the running time for the first

stage can be reduced to L(p)ﬁ“’(” . If in addition we use sparse matrix
techniques such as those of [64] to solve the system of linear equations, then
we also reduce the running time of the second stage to L(p)‘/i“’(l) . After
this precomputation, the computation of individual logarithms in the third
stage can be carried out in L(p) 1/V2+o() bit operations. These improvements
are due to Pomerance [56]. It should also be noted that if the running time
of the first two stages is increased and we use the elliptic curve factorization
method in the third phase, then the time for the last stage can be decreased
further.

5.1.2. Trading rigor for speed. The algorithm of Pomerance has, to date,
the smallest asymptotic running time that is rigorously proved for GF(p)*,
but there are variations of the index calculus method due to Coppersmith,
Odlyzko, and Schroeppel [20], which are conjectured to be faster. In their
paper they actually describe three such algorithms, called the linear sieve,
the residue list sieve, and the Gaussian integer method. For each of these
methods there is a heuristic analysis that suggests a running time of L(p)”"(”
for the first two stages, followed by a running time of L(p) 1/2+0ll) 14 compute
individual logarithms in the third stage. Unfortunately, none of them have
been rigorously analyzed, so their running times remain conjectures. In this
treatment we shall be content to describe the Gaussian integer method and
give a heuristic analysis of the running time.

For simplicity consider the case where p = 1( mod 4), so that —1 is a
quadratic residue modulo p. The description of the algorithm takes place
in an isomorphic copy of GF(p)*. We construct such a copy by first finding
integers 7 and V' with T’ +v?= p . This can be done by a method related
to the Euclidean algorithm (see [13]); note that trivially we have 0 < T, V <
P . Now consider the ring Z[i]/(T + iV). Since (T + iV) is a maximal
ideal, the ring Z[i]/(T + iV') is actually a field, so it is an isomorphic copy
of GF(p)*. In fact, an explicit isomorphism is given by

¢ Z[N/(T+iV)— Z/pZ, ¢(c+id)=c+ TV_ld(modp).
Let b = e + if be a primitive element in the field. We take P> s Py

to be a set of primes in Z[/] of norm < L(p)l/ 2 together with V', and we

calculate the logarithms of the p,'.s to the base b. Using the isomorphism

¢ gives a method for calculating logarithms to the base ¢(b) = e + Tr—!
f(mod p).
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In the first stage we shall construct relations by a sieving procedure, search-
ing for integers ¢, d < L(p)l/ 2 such that ¢V —dT is smooth with respect to
L(p)l/ 2 The sieving is accomplished by fixing a value of ¢ and sieving the
values of d. The sieving starts by initializing to all zeros an array of length
L(p)l/z. For each (real) prime power p{ such that p,/T and p{ < L(p)l/2
find the least positive integer d with d = cVT—l(mod p,{ ). We then increase
the array value corresponding to d by an approximation to logp;, and then
stepping through the array in steps of pf , we perform the same operation on
all array elements corresponding to the integers = d(mod p{ ). In addition,
for the largest possible value of j, we check each of the integers that are
sieved to see if they are divisible by higher powers of p,, and if so we add
the appropriate multiple of logp, .

After this process, the array elements contain approximations to the log-
arithms of the “smooth part” of the integers ¢V — d7T. We then search
through the array to find those entries that are large enough to indicate that
they probably correspond to smooth residues. From these we can then use
trial division to check if they do in fact correspond to smooth residues, and
if so then we obtain a relation of the form

b

m
[T pj” =cV - dT(modp).
j=1
p; real
For each such pair (c, d), it is easy to see that
¢V —-dT =V(c+id)(mod T + iV),

and if it happens that ¢ + id factors as a product of complex primes of
norm not exceeding L(p)l/ 2 then we obtain a linear relation modulo p — 1
involving the discrete logarithms of these primes (and V') to the base b.

Note that the complex number ¢+ id is quite small since ¢, d < L(p)l/ z
Hence we might expect that the probability of ¢ + id factoring completely
using the complex primes of norm < L(p)l/ 2 is bounded below by a con-
stant (see [28]). The numbers cV — dT are only slightly larger than /p in
magnitude, and therefore have a probability of L(p)_l/ 2+o() that they will
be smooth. Hence we probably need only examine L(p)”"“) pairs ¢, d to
get L(p)l/ 2 equations, and the running time of stage 1 is L(p)””m . Using
sparse matrix techniques, the running time for stage 2 will also be L(p)”o(l) .
Stage 3 can be performed in much the same way as stage 1, giving a running
time of L(p)l/ 2+o(l) Unfortunately, this analysis is only heuristic, since we
have no argument to show that the events of ¢+ id and cV —dT both being
smooth are independent.

While it is perhaps premature to mention it, the Gaussian integer algo-
rithm has recently spurred some very interesting developments on other dis-
crete logarithm and factoring algorithms. First of all, it inspired J. Pollard
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to develop a method for factoring integers that are very close to cubes of
integers. The method of Pollard requires computations to be performed in a
cubic extension of the rationals, and has therefore come to be known as the
number field sieve (see [42]). This in turn led several people to realize that
the method could be generalized to work for arbitrary integers, using arith-
metic in more general extensions of the rationals. At the time of this writing,
much work is left to be done to determine if the general method can ever
be made practical or rigorous. Investigations by Joe Buhler, H. W. Lenstra,
Jr., and Carl Pomerance have at least uncovered a heuristic argument to
show that the method should be able to factor an integer »n in approximately
exp (c(log n)'/ 3(log log n)z/ 3) operations for some constant ¢. Further work

by Dan Gordon [26] suggests that the technique can also be applied to the
problem of computing discrete logarithms in GF(p)*, resulting in an algo-

rithm with heuristic running time exp (c(log p)l/ 3(log log p)z/ 3) .

5.1.3. Practical experience in GF(p)*. The emphasis in this section has
been on asymptotic analysis of running times. Just as in integer factoring
algorithms, there are numerous refinements that can be applied to improve
the running times of practical versions. In fact there has been rather little
practical experience with such algorithms, and the only serious attempt to im-
plement an index calculus method for GF(p)” was carried out very recently
by Brian LaMacchia and A. M. Odlyzko [40] of Bell Laboratories, who have
implemented the Gaussian integer method of [20] and the Lanczos method
for sparse linear systems over a finite field. Using their programs they were
able to build a dictionary of approximately 90,000 logarithms for a prime of
58 digits (specially chosen as one used in an actual system). Their experience
seems to suggest that it is possible to compute discrete logarithms in groups
GF(p)" with p ~ 10'°.

5.2. Finite fields GF(Zk) . In discussing discrete logarithms over GF(Zk)* ,
we should first agree on a model for the group. It is convenient to regard
GF(2k) as consisting of the set of polynomials over GF(2) of degree less
than &, with operations performed modulo some fixed irreducible polyno-
mial f(x) of degree k. In the case of GF(p)*, we took the group elements
Py>..- D, tobethe first m small primes. In the case of GF(2k)* , we take
Py>--- »D,, tobetheirreducible polynomials of degree not greater than some
value ¢. The relationship between ¢ and m is easily deduced from the fact
that the number of irreducible polynomials over GF(2) of degree less than
or equal to ¢ is exactly [32, ex. 4.6.2.4]

S a2,

d<i fld

which is approximately 2'+1/t .
Let g be a generator of GF(Zk)*. In the first stage of the algorithm,
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we choose random integers b € [1, 2k 1], compute a polynomial r with
degree (r) < k and r = gb , and try to factor r as a product of irreducibles
of degree not exceeding ¢. This can be done relatively quickly using a fast
exponentiation method and a fast method for factoring polynomials. It is
perhaps surprising to learn that the problem of factoring polynomials over
finite fields is relatively easy, and that there exist probabilistic algorithms
that will factor a polynomial over GF(2) of degree k in an expected time
of O(k) for some constant ¢ (see [32, §4.6.2]).

In order to estimate the running time of the first stage, we need to know
how many polynomials over GF(2) have all of their irreducible factors of
degree at most . We let N(d,t) denote the number of polynomials of
degree exactly d, all of whose irreducible factors are of degree not exceeding
t. Since the polynomials r that are generated are random polynomials of
degree < k, the probability that a given value of b will produce a relation

of the form (5.1) is
Y Nd, 1)

d<k

Y N(d,d)
d<k
Odlyzko [50] has shown that this latter quantity is of the form

exp ((1 +0(1))§loge (é)) )

provided k — oo and U100 oy o g 991100 Hence, in order to generate m

relations of the form (5.1), we expect stage 1 to require examination of

m exp <(1 + o(l))% log, <§>>

values of b. Since each b takes time O(k‘) operations for a constant ¢,
the total running time for stage 1 is of the same form.

The second stage of the algorithm takes mirol) operations modulo 2k 1
if we use the sparse matrix methods of Wiedemann [64], giving a total running
time for the first two stages of

mexp ((1 + o(1))§ log, (é)) +om™ M.

- klog, k 12
~\2log, 2 ’
we get a total running time of exp ((cl + o(1))(k log, k)l/z), where ¢, =

V/2log, 2. The time for the third stage can be analyzed in a similar manner,
giving a running time of exp ((2%l + o(1))(k log, k)l/z) . This is in fact the

By choosing

best rigorously proved running time for an algorithm in GF(2k)” (see [56]).
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So far, the description of the index calculus method as it applies to
GF(Zk)* has paralleled exactly the presentation for GF(p)*. In the case of
GF(Zk)* there are, however, some very significant improvements that can be
made, both in the performance of implementations and the heuristic asymp-
totic running time estimates. Blake, Fuji-Hara, Mullin, and Vanstone [7]
gave several such improvements, including one based on the fact that for any
integer b, it is relatively easy to calculate polynomials 4, and 4, of degree

< k/2 with hlgb = h, . If all of the irreducible factors of both #, and 4,
have degree less than ¢, then we obtain a relation of the form (5.1). Since
their degree is smaller, this is slightly more likely to happen, even though
we require them both to have this property. This improvement does not
significantly improve the asymptotic behavior, however.

The improvement of Blake, et al, relies on the factorization of polynomials
of degree less than k/2, and there are several other methods that take this
approach. A complete description of these developments is beyond the scope
of this paper, but the interested reader will find an excellent description in
the survey paper by Odlyzko [50]. In the present paper we shall be content
to describe a significant improvement on the basic index calculus method
due to Coppersmith [18]. Coppersmith’s algorithm relies on factorizations
of polynomials of degree approximately K3 , and is interesting for both
practical and theoretical reasons. The present arguments for the asymptotic
running time are based on heuristic assumptions, and it remains an open
question to prove that the analysis is correct. The heuristic argument suggests

that it will have a running time of exp k'3 logz/ 3 k) for some constant c¢.

In practice, the algorithm performs much better than previous algorithms
(see [19], [18]), and there seems to be little reason to doubt the heuristic
arguments.

In the Coppersmith algorithm, we assume that the polynomial f used to
define the field has the form x* + Ji(x), where the degree of f| is of size
log k. It turns out that this is not a severe restriction, since it is relatively easy
to transfer a discrete logarithm from one representation of the field to any
other (see [50, §5.2]). Moreover, there is a heuristic argument to suggest that
such irreducible polynomials should exist (although this remains unproved).

In order to describe the first stage in the Coppersmith method, we shall
require some notation. Let r be an integer, and define 4 = [k27"] + 1.
To generate a relation, we first choose random relatively prime polynomials
A(x) and B(x) of degrees <. We then set w,(x) = A(x)xh + B(x) and

2"
(5.5) Wy(x) = w, (x)” (mod f(x)).
It follows from our special choice of f(x) that we can take
2 hY —k 2
w,(x) = A(x" )x" " fi(x)+B(x"),
so that deg(w,) < 2"t + h2" — k + deg(f,). If we choose ¢ and 2" to be of
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order k" 3, then the degrees of w, and w, will be of order K3 If they
behave as random polynomials of that degree (as we might expect), then
there is a good chance that all their irreducible factors will have degrees not
exceeding ¢. If so, then from (5.5) we obtain a linear equation involving the
logarithms of polynomials of degree <¢.

A detailed analysis of the method shows that the parameters can be chosen
to give a running time for the first stage of

exp((c, + 0(1))k1/3 logz/3 k), wherec, < 1.351.

The second stage of the Coppersmith method is the same as in the basic
index calculus method, requiring a solution of a system of linear congruences.
The third stage is somewhat more complicated than in the basic index calculus
method. We omit the details of how it works, but the basic idea is to compute
the logarithm of an individual polynomial by computing the logarithms of a
sequence of polynomials with decreasing degrees. The running time of the
third phase is of the form

13, 2/3

exp((cy +o(1))k " log™ " k),

where ¢, < 1.098, so it takes less time than the first two stages.

The previous discussion was primarily concerned with asymptotic analysis
of algorithms, but it is interesting to note that both Blake, et al [7] and Cop-
persmith and Davenport [19] have implemented their algorithms for thé test
case GF(2127)* , and have been successful in building a database of logarithms
that will enable them to rather easily compute individual logarithms. This
is significant since both Mitre and Hewlett-Packard have in the past chosen
this field for systems intended for actual use, and they must now be regarded
as totally insecure. Odlyzko [50] has carried out an extensive analysis that
suggests the Coppersmith algorithm will make it feasible to compute discrete
logarithms in GF(2k)* for k < 520 with a supercomputer, and perhaps for
k < 1280 using very expensive special purpose hardware. It is interesting
to note that a Canadian company named Newbridge Microsystems is now
producing a Data Encryption Processor chip that implements arithmetic in
GF(2593). This chip is intended for use in various cryptographic protocols
whos&;gs}ecurity is based on the difficulty of the discrete logarithm problem in
GF(2°7).

6. An Example and a Challenge
Let g = (7149 —1)/6,and let p=2-739-g+ 1. A summary of a proof
that ¢ is prime may be found in [12]. Moreover, it is easy to verify that
792 4 1 (mod p),
7= 1/739 £ 1 (mod p),
7(p—l)/q ¢ 1 (mod p)
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It follows from these equations that 7 has order p — 1 modulo p, so that
7 must be a primitive root modulo p, and from this it easily follows that p
is prime.

As an example of how this can be used in a Diffie-Hellman scheme, party
A chooses a random residue x modulo p, computes 7° (mod p), and sends
the result to party B, keeping x secret. B receives

7% = 127402180119973946824269244334322849749382042586931621654
55773529032291467909599868186097881304659516645545814428
0588076766033781.

Party B then chooses a random residue y modulo p, computes 7 (mod p),
and sends the result to A4, keeping y secret. A receives

7’ = 180162285287453102444782834836799895015967046695346697313
02512173405995377205847595817691062538069210165184866236
2137934026803049.

They can now both compute the secret key 7°” (mod p).

Now for a challenge: The author will pay $100 to the first person who
finds the secret key constructed from the above communication. This offer
will only be paid if the person claiming it provides a proof that their answer
is correct!

7. Some Open Questions

There remain a number of interesting open questions regarding discrete
logarithms. The biggest one of these is of course whether the discrete loga-
rithm problem is really “hard.” At present the only evidence for this is our
ignorance. We know that the problem has been studied going back at least
as far as Gauss [25] in 1801 and Jacobi [31] in 1839, but the algorithms that
are presently known are not fast enough to break the systems. Leaving this
basic question aside for a moment, we see several other open questions. To
this author, the most interesting of these are the following.

- Is there a sense in which the general discrete logarithm problem is
equivalent to the Diffie-Hellman problem? (i.e., is it possible to gen-
eralize the result of [9]?).

— Are there other cases for which the discrete logarithm problem is easy,
similar to the case when the group has smooth order? For example,
is there a rapid way to calculate discrete logarithms in GF(p)" when
p + 1 has all small prime factors?

— Very recently, Menezes, Vanstone, and Okamoto [47] have shown
that the discrete logarithm problem for an elliptic curve group over a
finite field GF(q) can be reduced to the discrete logarithm problem
in GF(qk)* for some k. For supersingular curves, it turns out that
k is rather small, and for this case we obtain an algorithm with
subexponential running time. One question remains: Is there an
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algorithm for discrete logarithms in elliptic curve groups to improve
on the Shanks/Pollard running time estimates?

- For groups GF(pk)* with fixed p, the methods for GF(Zk)* carry
over directly to give an algorithm with “subexponential” running time
(see [29]). The case GF(pz)* was also considered by ElGamal [23].
For other finite fields there is a gap in our knowledge, and in partic-
ular, for the groups GF(pk)* where both p and k tend to infinity,
it is unknown whether there is a subexponential algorithm.

— Can one find a variation of Coppersmith’s algorithm for GF(2k )"
that has a rigorously proved running time of exp(ckl/ 3 logz/ 3 k) for
some constant ¢ ?

— Is there an algorithm for computing discrete logarithms in GF(p)*
with a rigorously provable running time of L(p)1+0(1) ? There are
several algorithms that have been conjectured to have this running
time in [20], but none of them have ever been fully analyzed. An even
more ambitious project would be to prove that the method described
in [26] based on the number field sieve has the conjectured expected
running time of exp(c(log p)l/ 3(log log p)z/ 3) for some constant c.

- Can one prove that a positive proportion of the bits of the discrete
logarithm in GF(p)" are simultaneously secure in the sense of [43]?
(See §3.)

The discrete logarithm problem has many different facets to it, and there
are areas in which much remains to be discovered. If the reader is interested
in learning more about the subject of discrete logarithms, he/she may profit
by consulting some of the references given here. The list of references is not
a complete bibliography on the subject, but contains a good sample of papers
on the three themes covered in this survey, namely applications to cryptog-
raphy, algorithms for computing discrete logarithms, and other complexity
issues. Of particular interest is the survey paper of Odlyzko [50], in which he
gives a nice treatment of algorithms for the discrete logarithm problem with
emphasis on GF(Zk) , along with numerous other useful references. Further-
more, anyone interested in modern cryptography should definitely read the
original paper of Diffie and Hellman [21] that opened Pandora’s box on ap-
plications of number theory to cryptology. This is probably the paper that is
now cited most often in research papers on cryptology.
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